825 resultados para Bed and breakfast accommodations
Resumo:
BACKGROUND: Vaccination of health care workers (HCW) against seasonal influenza (SI) is recommended but vaccination rate rarely reach >30%. Vaccination coverage against 2009 pandemic influenza (PI) was 52% in our hospital, whilst a new policy requiring unvaccinated HCW to wear a mask during patient care duties was enforced. AIMS: To investigate the determinants of this higher vaccination acceptance for PI and to look for an association with the new mask-wearing policy. METHODS: A retrospective cohort study, involving HCW of three critical departments of a 1023-bed, tertiary-care university hospital in Switzerland. Self-reported 2009-10 SI and 2009 PI vaccination statuses, reasons and demographic data were collected through a literature-based questionnaire. Descriptive statistics, uni- and multivariate analyses were then performed. RESULTS: There were 472 respondents with a response rate of 54%. Self-reported vaccination acceptance was 64% for PI and 53% for SI. PI vaccination acceptance was associated with being vaccinated against SI (OR 9.5; 95% CI 5.5-16.4), being a physician (OR 7.7; 95% CI 3.1-19.1) and feeling uncomfortable wearing a mask (OR 1.7; 95% CI 1.0-2.8). Main motives for refusing vaccination were: preference for wearing a surgical mask (80% for PI, not applicable for SI) and concerns about vaccine safety (64%, 50%) and efficacy (44%, 35%). CONCLUSIONS: The new mask-wearing policy was a motivation for vaccination but also offered an alternative to non-compliant HCW. Concerns about vaccine safety and efficiency and self-interest of health care workers are still main determinants for influenza vaccination acceptance. Better incentives are needed to encourage vaccination amongst non-physician HCW.
Resumo:
Abstract Objective: To perform a comparative dosimetric analysis, based on computer simulations, of temporary balloon implants with 99mTc and balloon brachytherapy with high-dose-rate (HDR) 192Ir, as boosts to radiotherapy. We hypothesized that the two techniques would produce equivalent doses under pre-established conditions of activity and exposure time. Materials and Methods: Simulations of implants with 99mTc-filled and HDR 192Ir-filled balloons were performed with the Siscodes/MCNP5, modeling in voxels a magnetic resonance imaging set related to a young female. Spatial dose rate distributions were determined. In the dosimetric analysis of the protocols, the exposure time and the level of activity required were specified. Results: The 99mTc balloon presented a weighted dose rate in the tumor bed of 0.428 cGy.h-1.mCi-1 and 0.190 cGyh-1.mCi-1 at the balloon surface and at 8-10 mm from the surface, respectively, compared with 0.499 and 0.150 cGyh-1.mCi-1, respectively, for the HDR 192Ir balloon. An exposure time of 24 hours was required for the 99mTc balloon to produce a boost of 10.14 Gy with 1.0 Ci, whereas only 24 minutes with 10.0 Ci segments were required for the HDR 192Ir balloon to produce a boost of 5.14 Gy at the same reference point, or 10.28 Gy in two 24-minutes fractions. Conclusion: Temporary 99mTc balloon implantation is an attractive option for adjuvant radiotherapy in breast cancer, because of its availability, economic viability, and similar dosimetry in comparison with the use of HDR 192Ir balloon implantation, which is the current standard in clinical practice.
Resumo:
This work investigates the possible effect of pressure and residence time to the reaction of aluminum hydroxide into aluminum oxide. Various pressurized conditions are used as well as the help of various residence times. The aim is to increase the conversion of the reaction with the use of different pressures and residence times. The tests were performed with a laboratory scale fluidized bed reactor at the Outotec R&D Center in Frankfurt. Additional test work such as particle size analysis and differential thermal analysis were also carried out. Some calcined samples were also characterized with X-ray diffraction at the University of Auckland to obtain a reaction pathway when using pressurized conditions. All of the results are then compared with previous results.
Resumo:
It is often reasonable to convert old boiler to bubbling fluidized bed boiler instead of building a new one. Converted boiler consists of old and new heat surfaces which must be fitted to operate together. Prediction of heat transfer in not so ideal conditions sets challenges for designers. Two converted boilers situated in Poland were studied on the grounds of acceptance tests and further studies. Calculation of boiler process was performed with boiler design program. Main interest was heat transfer in superheaters and factors affecting it. Theory for heat transfer is presented according to information found from literature. Results obtained from experimental studies and calculations have been compared. With correct definitions calculated parameters corresponded well to measured data at boiler maximum design load. However overload situations revealed to be difficult to model at least without considering changes in the combustion process which requires readjustments to the design program input values.
Resumo:
From the boiler design point of view, it is imperative to know and understand the operation of the boiler. Since comprehensive measurement of a large furnace is impossible, the furnace can be modeled in order to study its behavior and phenomena. This requires the used model to be validated to correspond with the physical furnace behavior. In this thesis, a three dimensional furnace model is validated to match a bituminous coal utilizing, supercritical once-through circulating fluidized bed combustor based on measurement data. The validated model is used for analyzing the furnace heat transfer. Other heat transfer analysis methods are energy balance method based on tube surface temperature measurements and a method based on measured temperature difference between the tube crest and the fin. The latter method was developed in the thesis using Fluent-software. In the theory part, literature is reviewed and the fundamental aspects of circulating fluidized bed are discussed. These aspects are solid particle behavior in fluidization known as hydrodynamics, behavior of fuel and combustion and heat transfer. Fundamental aspects of modeling are also presented.
Resumo:
In a previous work, a hybrid system consisting of an advanced oxidation process (AOP) named Photo-Fenton (Ph-F) and a fixed bed biological treatment operating as a sequencing batch biofilm reactor (SBBR) was started-up and optimized to treat 200 mg·L-1 of 4-chlorophenol (4-CP) as a model compound. In this work, studies of reactor stability and control as well as microbial population determination by molecular biology techniques were carried out to further characterize and control the biological reactor. Results revealed that the integrated system was flexible and even able to overcome toxic shock loads. Oxygen uptake rate (OUR) in situ was shown to be a valid tool to control the SBBR operation, to detect toxic conditions to the biomass, and to assess the recovery of performance. A microbial characterization by 16S rDNA sequence analysis reveals that the biological population was varied, although about 30% of the bacteria belonged to the Wautersia genus.
Resumo:
The present study deals with phenol adsorption on chitin and chitosan and removal of contaminants from wastewater of a petroleum refinery. The adsorption kinetic data were best fitted to first- and second-order models for chitosan and chitin, respectively. The results of adsorption isotherms showed Langmuir model more appropriately described than a Freundlich model for both adsorbents. The adsorption capacity was 1.96 and 1.26 mg/g for chitin and chitosan, respectively. Maximum removal of phenol was about 70-80% (flow rate: 1.5 mL/min, bed height: 18.5 cm, and 30 mg/L of phenol. Wastewater treatment with chitin in a fixed-bed system showed reductions of about 52 and 92% for COD and oil and greases, and for chitosan 65 and 67%, respectively. The results show improvement of the effluent quality after treatment with chitin and chitosan.
Resumo:
A distinctive design feature of steam boiler with natural circulation is the presence of the steam drum which plays a role of the separator of vapor from the flow of water-and-steam mixture coming into steam drum from the furnace tubes. Steam drum with unheated downcomer tubes, deducing from it, and riser (screen/furnace tubes) inside the furnace is a closed circulation loop in which movement of water (downcomer tubes) and water-and-steam mixture (riser tubes) is organized. The movement of the working fluid is appears due to occurrence of the natural pressure, determined by the difference in hydrostatic pressure and the mass of water and water-and-steam mixtures in downcomer and riser tubes and called the driving pressure of the natural circulation:
Resumo:
A distinctive design feature of steam boiler with natural circulation is the presence of the steam drum which plays a role of the separator of vapor from the flow of water-and-steam mixture coming into steam drum from the furnace tubes. Steam drum with unheated downcomer tubes, deducing from it, and riser (screen/furnace tubes) inside the furnace is a closed circulation loop in which movement of water (downcomer tubes) and water-and-steam mixture (riser tubes) is organized. The movement of the working fluid is appears due to occurrence of the natural pressure, determined by the difference in hydrostatic pressure and the mass of water and water-and-steam mixtures in downcomer and riser tubes and called the driving pressure of the natural circulation: S drive = H steam (ρ down + ρ mix) g where: ρ down - density of water in downcomer tubes; ρ mix - density of water in riser tubes; H steam - height of steam content section; g - acceleration of gravity. In steam boilers with natural circulation the circulation rate is usually between 10 and 30. Thus, consumption of water in the circulation circuit “circulation rate times” more than steam output of the boiler. There are two aspects of the design of natural water circulation loops. One is to ensure a sufficient mass flux of circulating water to avoid burnout of evaporator tubes. The other is to avoid tube wall temperature fluctuation and tube vibration due to oscillation of circulation velocity. The design criteria are therefore reduced, in principle, to those of critical heat flux, critical flow rate for burnout, and flow instability. In practical design, however, the circulation velocity and the void fraction at the evaporator tube outlet are used as the design criteria (Seikan I., et. al., 1999). This study has been made with assumption that the heat flux in the furnace of the boiler even all the time. The target of the study was to define the circulation rate of the boiler, thus average heat flux do not change it. I would like to acknowledge professionals from “Foster Wheeler” company for good and comfortable cooperation.
Resumo:
The developing energy markets and rising energy system costs have sparked the need to find new forms of energy production and increase the self-sufficiency of energy production. One alternative is gasification, whose principles have been known for decades, but it is only recently when the technology has become a true alternative. However, in order to meet the requirements of modern energy production methods, it is necessary to study the phenomenon thoroughly. In order to understand the gasification process better and optimize it from the viewpoint of ecology and energy efficiency, it is necessary to develop effective and reliable modeling tools for gasifiers. The main aims of this work have been to understand gasification as a process and furthermore to develop an existing three-dimensional circulating fluidized bed modeling tool for modeling of gasification. The model is applied to two gasification processes of 12 and 50 MWth. The results of modeling and measurements have been compared and subsequently reviewed. The work was done in co-operation with Lappeenranta University of Technology and Foster Wheeler Energia Oy.
Resumo:
The results shown in this thesis are based on selected publications of the 2000s decade. The work was carried out in several national and EC funded public research projects and in close cooperation with industrial partners. The main objective of the thesis was to study and quantify the most important phenomena of circulating fluidized bed combustors by developing and applying proper experimental and modelling methods using laboratory scale equipments. An understanding of the phenomena plays an essential role in the development of combustion and emission performance, and the availability and controls of CFB boilers. Experimental procedures to study fuel combustion behaviour under CFB conditions are presented in the thesis. Steady state and dynamic measurements under well controlled conditions were carried out to produce the data needed for the development of high efficiency, utility scale CFB technology. The importance of combustion control and furnace dynamics is emphasized when CFB boilers are scaled up with a once through steam cycle. Qualitative information on fuel combustion characteristics was obtained directly by comparing flue gas oxygen responses during the impulse change experiments with fuel feed. A one-dimensional, time dependent model was developed to analyse the measurement data Emission formation was studied combined with fuel combustion behaviour. Correlations were developed for NO, N2O, CO and char loading, as a function of temperature and oxygen concentration in the bed area. An online method to characterize char loading under CFB conditions was developed and validated with the pilot scale CFB tests. Finally, a new method to control air and fuel feeds in CFB combustion was introduced. The method is based on models and an analysis of the fluctuation of the flue gas oxygen concentration. The effect of high oxygen concentrations on fuel combustion behaviour was also studied to evaluate the potential of CFB boilers to apply oxygenfiring technology to CCS. In future studies, it will be necessary to go through the whole scale up chain from laboratory phenomena devices through pilot scale test rigs to large scale, commercial boilers in order to validate the applicability and scalability of the, results. This thesis shows the chain between the laboratory scale phenomena test rig (bench scale) and the CFB process test rig (pilot). CFB technology has been scaled up successfully from an industrial scale to a utility scale during the last decade. The work shown in the thesis, for its part, has supported the development by producing new detailed information on combustion under CFB conditions.
Resumo:
Comprehensive understanding of the heat transfer processes that take place during circulating fluidized bed (CFB) combustion is one of the most important issues in CFB technology development. This leads to possibility of predicting, evaluation and proper design of combustion and heat transfer mechanisms. The aim of this thesis is to develop a model for circulating fluidized bed boiler operation. Empirical correlations are used for determining heat transfer coefficients in each part of the furnace. The proposed model is used both in design and offdesign conditions. During off-design simulations fuel moisture content and boiler load effects on boiler operation have been investigated. In theoretical part of the thesis, fuel properties of most typical classes of biomass are widely reviewed. Various schemes of biomass utilization are presented and, especially, concerning circulating fluidized bed boilers. In addition, possible negative effects of biomass usage in boilers are briefly discussed.
Resumo:
This study analyzed the feasibility and efficacy of surgical therapies in patients with sleep-disordered breathing ranging from partial upper airway obstruction during sleep to severe obstructive sleep apnea syndrome. The surgical procedures evaluated were tracheostomy, laser-assisted uvulopalatoplasty (LUPP) and uvulopalatopharyngoplasty (UPPP) with laser or ultrasound scalpel. Obstructive sleep apnea and partial upper airway obstruction during sleep were measured with the static charge-sensitive bed (SCSB) and pulse oximeter. The patients with severe obstructive sleep apnea syndrome were treated with tracheostomy. Palatal surgery was performed only if the upper airway narrowing occurred exclusively at the soft palate level in patients with partial upper airway obstruction during sleep. The ultrasound scalpel technique was compared to laser-assisted UPPP. The efficacy of LUPP to reduce partial upper airway obstruction during sleep was assessed and histology of uvulopalatal specimen was compared to body fat distributional parameters and sleep study findings. Tracheostomy was effective therapy in severe obstructive sleep apnea. Partial upper airway obstruction and arterial oxyhemoglobin desaturation index during sleep decreased significantly after LUPP. The minimal retropalatal airway dimension increased and soft palate collapsibility decreased at the level where the velopharyngeal obstruction had occurred before the surgery. Ultrasound scalpel did not offer any significant benefits over the laser-assisted technique, except fewer postoperative haemorrhage events. The loose connective tissue as a manifestation of edema was the only histological finding showing correlation with partial upper airway obstruction parameters of SCSB. Tracheostomy remains a life-saving therapy and also long-term option when adherence to CPAP fails in patients with obstructive sleep apnea syndrome. LUPP effectively reduces partial upper airway obstruction during sleep provided that obstruction at the other levels than the soft palate and uvula were preoperatively excluded. Technically the ultrasound scalpel or laser surgeries are equal. In patients with partial upper airway obstruction the loose connective tissue is more important than fat accumulation in the soft palate. This supports the hypothesis that edema is a primary trigger for aggravation of upper airway narrowing during sleep at the soft palate level and evolution towards partial or complete upper airway obstruction during sleep.
Resumo:
The consumption of manganese is increasing, but huge amounts of manganese still end up in waste in hydrometallurgical processes. The recovery of manganese from multi-metal solutions at low concentrations may not be economical. In addition, poor iron control typically prevents the production of high purity manganese. Separation of iron from manganese can be done with chemical precipitation or solvent extraction methods. Combined carbonate precipitation with air oxidation is a feasible method to separate iron and manganese due to the fast kinetics, good controllability and economical reagents. In addition the leaching of manganese carbonate is easier and less acid consuming than that of hydroxide or sulfide precipitates. Selective iron removal with great efficiency from MnSO4 solution is achieved by combined oxygen or air oxidation and CaCO3 precipitation at pH > 5.8 and at a redox potential of > 200 mV. In order to avoid gypsum formation, soda ash should be used instead of limestone. In such case, however, extra attention needs to be paid on the reagents mole ratios in order to avoid manganese coprecipitation. After iron removal, pure MnSO4 solution was obtained by solvent extraction using organophosphorus reagents, di-(2-ethylhexyl)phosphoric acid (D2EHPA) and bis(2,4,4- trimethylpentyl)phosphinic acid (CYANEX 272). The Mn/Ca and Mn/Mg selectivities can be increased by decreasing the temperature from the commonly used temperatures (40 –60oC) to 5oC. The extraction order of D2EHPA (Ca before Mn) at low temperature remains unchanged but the lowering of temperature causes an increase in viscosity and slower phase separation. Of these regents, CYANEX 272 is selective for Mn over Ca and, therefore, it would be the better choice if there is Ca present in solution. A three-stage Mn extraction followed by a two-stage scrubbing and two-stage sulfuric acid stripping is an effective method of producing a very pure MnSO4 intermediate solution for further processing. From the intermediate MnSO4 some special Mn- products for ion exchange applications were synthesized and studied. Three types of octahedrally coordinated manganese oxide materials as an alternative final product for manganese were chosen for synthesis: layer structured Nabirnessite, tunnel structured Mg-todorokite and K-kryptomelane. As an alternative source of pure MnSO4 intermediate, kryptomelane was synthesized by using a synthetic hydrometallurgical tailings. The results show that the studied OMS materials adsorb selectively Cu, Ni, Cd and K in the presence of Ca and Mg. It was also found that the exchange rates were reasonably high due to the small particle dimensions. Materials are stable in the studied conditions and their maximum Cu uptake capacity was 1.3 mmol/g. Competitive uptake of metals and acid was studied using equilibrium, batch kinetic and fixed-bed measurements. The experimental data was correlated with a dynamic model, which also accounts for the dissolution of the framework manganese. Manganese oxide micro-crystals were also bound onto silica to prepare a composite material having a particle size large enough to be used in column separation experiments. The MnOx/SiO2 ratio was found to affect significantly the properties of the composite. The higher the ratio, the lower is the specific surface area, the pore volume and the pore size. On the other hand, higher amount of silica binder gives composites better mechanical properties. Birnesite and todorokite can be aggregated successfully with colloidal silica at pH 4 and with MnO2/SiO2 weight ratio of 0.7. The best gelation and drying temperature was 110oC and sufficiently strong composites were obtained by additional heat-treatment at 250oC for 2 h. The results show that silica–supported MnO2 materials can be utilized to separate copper from nickel and cadmium. The behavior of the composites can be explained reasonably well with the presented model and the parameters estimated from the data of the unsupported oxides. The metal uptake capacities of the prepared materials were quite small. For example, the final copper loading was 0.14 mmol/gMnO2. According to the results the special MnO2 materials are potential for a specific environmental application to uptake harmful metal ions.
Resumo:
Traditionally limestone has been used for the flue gas desulfurization in fluidized bed combustion. Recently, several studies have been carried out to examine the use of limestone in applications which enable the removal of carbon dioxide from the combustion gases, such as calcium looping technology and oxy-fuel combustion. In these processes interlinked limestone reactions occur but the reaction mechanisms and kinetics are not yet fully understood. To examine these phenomena, analytical and numerical models have been created. In this work, the limestone reactions were studied with aid of one-dimensional numerical particle model. The model describes a single limestone particle in the process as a function of time, the progress of the reactions and the mass and energy transfer in the particle. The model-based results were compared with experimental laboratory scale BFB results. It was observed that by increasing the temperature from 850 °C to 950 °C the calcination was enhanced but the sulfate conversion was no more improved. A higher sulfur dioxide concentration accelerated the sulfation reaction and based on the modeling, the sulfation is first order with respect to SO2. The reaction order of O2 seems to become zero at high oxygen concentrations.