906 resultados para Auditory masking
Resumo:
An Approach to the Rehabilitation of Prelingually Deaf Children After Cochlear Implantation Zheng Xiujin(Medical Psychology) Directed by Professor Yin WenGang Abstract Objective: To sum up the acquirement rule of speech and language capability which is for the prelingually deaf children after cochlear implantation by listening and language rehabilitation training and to investigate the factors that affect rehabilitation speed. Method: Sixty-four children received a cochlear implant at the age of 2 to 5 years from 2001 to 2005. They begin to be trained under group pattern after switch on 1 month. The whole training program lasted more than 7 months; after that, according to the teacher’s plan the training program was to be continued at home. Result: The period is 108±7.7 days that they can pronounce correctly 50 percent of all of simple-finals and compound-finals, the period is 115.0±7.8 days that they begin auditory repeating, the period is 135.3±10.9 days that they can speech the first specific word independently and the period is 200.3±13.9 days that they can speak 70 words and come into tri-gamut-word and two-word sentence period. The patient that is the group at the age of 2-3 years can take part in normal kindergarten after switch on about 10 months. There are no significant differences in various grades of speech-language development with different age groups and so do with different sex groups. There are significant differences in various grade of speech-language development with various IQ group (P<0.01) and so do with using and not using hearing aids before implantation. Conclusion: From the research we find that the speech and language development sequence is the same level between the prelingually deaf children of 2 to 5 years who received cochlear implant after speech training and normal children and which are stages of uncomplicated sound production, continuous syllabic (babbling), speech sprout, single-word utterances and two-word utterances in proper order. The time is short significantly and the reason is that cognition capability is enhanced along with the increase of age. The intelligence is main factor that affect rehabilitation speed and the speed in the group of high IQ is faster than common IQ. It is not because of the dominance cognition of the senior group that makes the increasing of the rehabilitation, it even makes slowly. The reason of which is that the senior group are exposed the language environment too late to achieve speech and language development. So we should perform an operation and training early. The effectiveness of rehabilitation after cochlear implantation is improved by using hearing aids before implantation. The reason is auditory stimulate can be benefit of to deaf children. The rehabilitation speeds in the children at the age of 2 to 5 years have nothing to do with sex. Key words: cochlear implant; speech therapy; paediatric rehabilitation
Resumo:
Numerous studies have shown that accentuation and implicit verb causality influenced pronoun resolution. However, many researchers cannot agree on the time course, as well as they know little about the interaction between the two types of information during comprehending Chinese sentences. The study aimed to explore the effects of accentuation and implicit verb causality on the pronoun processing during spoken Chinese sentences comprehension as well as their time courses, using auditory moving window technique and cross-modal probe paradigm. The main results were: 1) The reading time of the second clause in stressed pronoun condition was significantly longer than that in unstressed pronoun condition. Accentuation influenced the activation level of candidate antecedents. 2) Implicit verb causality influenced the pronoun interpretation during spoken Chinese sentences comprehension. It also affected the activation level of candidate antecedents immediately after people heard the pronoun. 3) There was “the first-mentioned effect” in spoken Chinese sentences comprehension. The effect seemed as if a general phenomenon during the pronoun processing. 4) Accentuation, Implicit verb causality and the first-mentioned effect interacted during the pronoun processing and spoken Chinese sentences comprehension. This study supported the focus hypothesis, indicating accentuation could shift the center of attention even in nonparallel-structure sentences; implicit verb causality influences the pronoun processing immediately; there was interaction between accentuation and implicit verb causality during spoken sentence comprehension.
Resumo:
One of the most important functions in the individual development is the interaction and integration of each sensory input. There exist two competing theories, i.e. the deficiency theory and the compensatory theory, regarding the origin and nature of changes in visual functions observed after auditory deprivation. The deficiency theory proposed that integrative processes are essential for normal development. In contrast, the compensatory theory stated that the loss of one sense may be met by a greater reliance upon, therefore an enhancement of the remaining senses. Given that hearing impaired children’s learning depends primarily on visual information, it is important to recognize the differences of visual attention between them and their hearing age-mates. Differences among age groups could exist in either selectivity or sustained attention. Study 1 and study 2 explored the selective and sustained attention development of hearing impaired and hearing students with average cognitive ability, aged from 7 years to college students. The analysis and discussion of the results are based on the visual attention development as well as deficiency theory and compensatory theory. According to the results of the study 1 and study 2, the spatial distribution and controlling of the visual attention between hearing impaired and hearing students were also investigated in the study 3 and study 4. The present work showed that: Firstly, both hearing impaired and hearing participants had the similar developmental trajectory of the sustained attention. The ability of children’s sustained attention appeared to improve with age, and in adolescence it reached the peak. The hearing impaired participants had the comparable sustained attention skills to the matched hearing ones. Besides, the results of the hearing impaired participants showed that they could maintain their attention and vigilance on the current task over the observation period. Secondly, group differences of visual attention development were found between hearing impaired and hearing participants. In the childhood, the visual attention developmental speed of the hearing impaired children was slower than that of the hearing ones. The selective attention skill of the hearing impaired were not comparable to the hearing ones, however, their selective skill improved with age, so in the adulthood, hearing impaired students showed the slight advantage in the selective attention skill over the hearing ones. Thirdly, hearing impaired and hearing participants showed the similar spatial distribution in the attention resources. In the low perceptual load condition, both participants were suffered great interference of the distrator at the fixation. In contrast, in the high perceptual load condition, hearing impaired adults were suffered more interference of the peripheral distractor, which suggested that they distributed more attention resources to the peripheral field when faced difficult tasks. Fourthly, both groups showed similar processing in the visual attention tasks. That is, they both searched the target with only the color feature in a parallel way, but in a serial way while processing orientation feature and the features with the combination of the color and orientation. Furthermore, the results indicated that two groups show similar ways in the attention controlling. In summary, the present study showed that visual attention development was dependent upon the integration of multimodal sensory information. Because of the interaction and integration of the input from various sensory, it has a negative impact on the intact sensory at the early stage of one sensory loss, however, it can better the functions of other intact sensory gradually with development and practice.
Resumo:
A number of functional neuroimaging studies with skilled readers consistently showed activation to visual words in the left mid-fusiform cortex in occipitotemporal sulcus (LMFC-OTS). Neuropsychological studies also showed that lesions at left ventral occipitotemporal areas result in impairment in visual word processing. Based on these empirical observations and some theoretical speculations, a few researchers postulated that the LMFC-OTS is responsible for instant parallel and holistic extraction of the abstract representation of letter strings, and labeled this piece of cortex as “visual word form area” (VWFA). Nonetheless, functional neuroimaging studies alone is basically a correlative rather than causal approach, and lesions in the previous studies were typically not constrained within LMFC-OTS but also involving other brain regions beyond this area. Given these limitations, it remains unanswered for three fundamental questions: is LMFC-OTS necessary for visual word processing? is this functionally selective for visual word processing while unnecessary for processing of non-visual word stimuli? what are its function properties in visual word processing? This thesis aimed to address these questions through a series of neuropsychological, anatomical and functional MRI experiments in four patients with different degrees of impairments in the left fusiform gyrus. Necessity: Detailed analysis of anatomical brain images revealed that the four patients had differential foci of brain infarction. Specifically, the LMFC-OTS was damaged in one patient, while it remained intact in the other three. Neuropsychological experiments showed that the patient with lesions in the LMFC-OTS had severe impairments in reading aloud and recognizing Chinese characters, i.e., pure alexia. The patient with intact LMFC-OTS but information from the left visual field (LVF) was blocked due to lesions in the splenium of corpus callosum, showed impairment in Chinese characters recognition when the stimuli were presented in the LVF but not in the RVF, i.e. left hemialexia. In contrast, the other two patients with intact LMFC-OTS had normal function in processing Chinese characters. The fMRI experiments demonstrated that there was no significant activation to Chinese characters in the LMFC-OTS of the pure alexic patient and of the patient with left hemialexia when the stimuli were presented in the LVF. On the other hand, this patient, when Chinese characters were presented in right visual field, and the other two with intact LMFC-OTS had activation in the LMFC-OTS. These results together point to the necessity of the LMFC-OTS for Chinese character processing. Selectivity: We tested selectivity of the LMFC-OTS for visual word processing through systematically examining the patients’ ability for processing visual vs. auditory words, and word vs. non-word visual stimuli, such as faces, objects and colors. Results showed that the pure alexic patients could normally process auditory words (expression, understanding and repetition of orally presented words) and non-word visual stimuli (faces, objects, colors and numbers). Although the patient showed some impairments in naming faces, objects and colors, his performance scores were only slightly lower or not significantly different relative to those of the patients with intact LMFC-OTS. These data provide compelling evidence that the LMFC-OTS is not requisite for processing non-visual word stimuli, thus has selectivity for visual word processing. Functional properties: With tasks involving multiple levels and aspects of word processing, including Chinese character reading, phonological judgment, semantic judgment, identity judgment of abstract visual word representation, lexical decision, perceptual judgment of visual word appearance, and dictation, copying, voluntary writing, etc., we attempted to reveal the most critical dysfunction caused by damage in the LMFC-OTS, thus to clarify the most essential function of this region. Results showed that in addition to dysfunctions in Chinese character reading, phonological and semantic judgment, the patient with lesions at LMFC-OTS failed to judge correctly whether two characters (including compound and simple characters) with different surface features (e.g., different fonts, printed vs. handwritten vs. calligraphy styles, simplified characters vs. traditional characters, different orientations of strokes or whole characters) had the same abstract representation. The patient initially showed severe impairments in processing both simple characters and compound characters. He could only copy a compound character in a stroke-by-stroke manner, but not by character-by-character or even by radical-by-radical manners. During the recovery process, namely five months later, the patient could complete the abstract representation tasks of simple characters, but showed no improvement for compound characters. However, he then could copy compound characters in a radical-by-radical manner. Furthermore, it seems that the recovery of copying paralleled to that of judgment of abstract representation. These observations indicate that lesions of the LMFC-OTS in the pure alexic patients caused several damage in the ability of extracting the abstract representation from lower level units to higher level units, and the patient had especial difficulty to extract the abstract representation of whole character from its secondary units (e.g., radicals or single characters) and this ability was resistant to recover from impairment. Therefore, the LMFC-OTS appears to be responsible for the multilevel (particularly higher levels) abstract representations of visual word form. Successful extraction seems independent on access to phonological and semantic information, given the alexic patient showed severe impairments in reading aloud and semantic processing on simple characters while maintenance of intact judgment on their abstract representation. However, it is also possible that the interaction between the abstract representation and its related information e.g. phonological and semantic information was damaged as well in this patient. Taken together, we conclude that: 1) the LMFC-OTS is necessary for Chinese character processing, 2) it is selective for Chinese character processing, and 3) its critical function is to extract multiple levels of abstract representation of visual word and possibly to transmit it to phonological and semantic systems.
Resumo:
As a species of internal representation, how is mental imagery organized in the brain? There are two issues related to this question: the time course and the nature of mental imagery. On the nature of mental imagery, today's imagery debate is influenced by two opposing theories: (1) Pylyshyn’s propositional theory and (2) Kosslyn’s depictive representation theory. Behavioural studies indicated that imagery encodes properties of the physical world, such as the spacial and size information of the visual world. Neuroimaging and neuropsychological data indicated that sensory cortex; especially the primary sensory cortex, is involved in imagery. In visual modality, neuroimaging data further indicated that during visual imagery, spatial information is mapped in the primary visual, providing strong evidences for depictive theory. In the auditory modality, behavioural studies also indicated that auditory imagery represents loudness and pitch of sound; this kind of neuroimaging evidence, however, is absent. The aim of the present study was to investigate the time course of auditory imagery processing, and to provide the neuroimaging evidence that imaginal auditory representations encode loudness and pitch information, using the ERP method and a cue-imagery (S1)-S2 paradigm. The results revealed that imagery effects started with an enhancement of the P2, probably indexing the top-down allocation of attention to the imagery task; and continued into a more positive-going late positive potentials (LPC), probably reflecting the formation of auditory imagery. The amplitude of this LPC was inversely related to the pitch of the imagined sound, but directly related to the loudness of the imagined sound, which were consistent with auditory perception related N1 component, providing evidences that auditory imagery encodes pitch and loudness information. When the S2 showed difference in pitch of loudness from the previously imagined S1, the behavioral performance were significantly worse and accordingly a conflict related N2 was elicited; and the high conflict elicited greater N2 amplitude than low conflict condition, providing further evidences that imagery is analog of perception and can encode pitch and loudness information. The present study suggests that imagery starts with an mechanism of top-down allocation of attention to the imagery task; and continuing into the step of imagery formation during which the physical features of the imagined stimulus can be encoded, providing supports to Kosslyn’s depictive representation theory.
Resumo:
The present study explored the influence of working memory span on accentuation effects in discourse comprehension from the approach of individual difference. High and low working memory span subjects were selected by Reading Span Test. Sentence-by-sentence Auditory Moving Window paradigm was employed to measure the effects of accentuation on discourse comprehension. The on-line processing time of discourse comprehension was compared between consistent accentuation condition, inconsistent accentuation condition and controlled condition. The results indicated that the accentuation effects were influenced by working memory capacity. For low working memory subjects, consistent accentuation speeded up the on-line processing of spoken discourse, inconsistent accentuation slowed down the on-line processing of spoken discourse. But for high working memory span subjects, neither effect was manifested. The only significant difference was found between the condition of inconsistent accentuation and consistent accentuation. During spoken discourse comprehension, there was no significant difference in the on-line processing time between high and low working memory span subjects in consistent accentuation condition as well as in neutral accentuation condition. However, in the condition of inconsistence accentuation, low span subjects spent significantly more time on the on-line processing of spoken discourse than high span subjects. The results could be explained by the controlled attention view of working memory.
Resumo:
Harmonicity is one of the important features of a vowel. It makes great contribution to pitch and quality of vowel. However, contribution of a mistuned harmonic will decrease as it is mistuned increasingly. A mistuned harmonic will be segregated as noise from complex by auditory system, which was called harmonic sieve (Duifhuis, 1982). According to Darwin (1986) and Moore et al (1985), the critical value of one mistuned harmonic would be segregated from vowel or complex is 3% to 8%--Harmonic Mistuned Effect (HME). Further questions need to be answered. For example, how will the harmonic sieve separate noise or whether the critical value change when more than two harmonics are mistuned? And what affect the HME? Three experiments were conducted to these questions. Experiment one was dealt with the number of mistuned harmonics as a factor affecting the HME. The position effect of HME was concerned in experiment two. The last experiment considered the relationship between HME and phase of the mistuned harmonic. The results indicated that (1) the HME was much greater when more than two harmonics were mistuned than only one harmonic was mistuned; (2) harmonic position played an important role in HME, the higher the harmonic was, the less HME was found for the complex, and the closer to formant the harmonic stood, the more significant HME existed; and (3) phase did not affect the HME significantly, however, its indirect contribution still existed, which related to the starting amplitude of a mistuned harmonic.
Resumo:
This work addresses two related questions. The first question is what joint time-frequency energy representations are most appropriate for auditory signals, in particular, for speech signals in sonorant regions. The quadratic transforms of the signal are examined, a large class that includes, for example, the spectrograms and the Wigner distribution. Quasi-stationarity is not assumed, since this would neglect dynamic regions. A set of desired properties is proposed for the representation: (1) shift-invariance, (2) positivity, (3) superposition, (4) locality, and (5) smoothness. Several relations among these properties are proved: shift-invariance and positivity imply the transform is a superposition of spectrograms; positivity and superposition are equivalent conditions when the transform is real; positivity limits the simultaneous time and frequency resolution (locality) possible for the transform, defining an uncertainty relation for joint time-frequency energy representations; and locality and smoothness tradeoff by the 2-D generalization of the classical uncertainty relation. The transform that best meets these criteria is derived, which consists of two-dimensionally smoothed Wigner distributions with (possibly oriented) 2-D guassian kernels. These transforms are then related to time-frequency filtering, a method for estimating the time-varying 'transfer function' of the vocal tract, which is somewhat analogous to ceptstral filtering generalized to the time-varying case. Natural speech examples are provided. The second question addressed is how to obtain a rich, symbolic description of the phonetically relevant features in these time-frequency energy surfaces, the so-called schematic spectrogram. Time-frequency ridges, the 2-D analog of spectral peaks, are one feature that is proposed. If non-oriented kernels are used for the energy representation, then the ridge tops can be identified, with zero-crossings in the inner product of the gradient vector and the direction of greatest downward curvature. If oriented kernels are used, the method can be generalized to give better orientation selectivity (e.g., at intersecting ridges) at the cost of poorer time-frequency locality. Many speech examples are given showing the performance for some traditionally difficult cases: semi-vowels and glides, nasalized vowels, consonant-vowel transitions, female speech, and imperfect transmission channels.
Resumo:
Background: Ototoxicity is a known side effect of combined radiation therapy and cisplatin chemotherapy for the treatment of medulloblastoma. the delivery of an involved field boost by intensity modulated radiation therapy (IMRT) may reduce the dose to the inner ear when compared with conventional radiotherapy. the dose of cisplatin may also affect the risk of ototoxicity. A retrospective study was performed to evaluate the impact of involved field boost using IMRT and cisplatin dose on the rate of ototoxicity.Methods: Data from 41 medulloblastoma patients treated with IMRT were collected. Overall and disease-free survival rates were calculated by Kaplan-Meier method Hearing function was graded according to toxicity criteria of Pediatric Oncology Group (POG). Doses to inner ear and total cisplatin dose were correlated with hearing function by univariate and multivariate data analysis.Results: After a mean follow-up of 44 months (range: 14 to 72 months), 37 patients remained alive, with two recurrences, both in spine with CSF involvement, resulting in a disease free-survival and overall survival of 85.2% and 90.2%, respectively. Seven patients (17%) experienced POG Grade 3 or 4 toxicity. Cisplatin dose was a significant factor for hearing loss in univariate analysis (p < 0.03). in multivariate analysis, median dose to inner ear was significantly associated with hearing loss (p < 0.01). POG grade 3 and 4 toxicity were uncommon with median doses to the inner ear bellow 42 Gy (p < 0.05) and total cisplatin dose of less than 375 mg/m(2) (p < 0.01).Conclusions: IMRT leads to a low rate of severe ototoxicity. Median radiation dose to auditory apparatus should be kept below 42 Gy. Cisplatin doses should not exceed 375 mg/m(2).
Resumo:
Monografia apresentada à Universidade Fernando Pessoa para obtenção do grau Licenciada em Medicina Dentária
Resumo:
Tese apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Doutor em Ciências Sociais, especialidade em Psicologia
Resumo:
Tese apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Doutor em Ciências Sociais, especialidade em Psicologia
Resumo:
To investigate the process underlying audiovisual speech perception, the McGurk illusion was examined across a range of phonetic contexts. Two major changes were found. First, the frequency of illusory /g/ fusion percepts increased relative to the frequency of illusory /d/ fusion percepts as vowel context was shifted from /i/ to /a/ to /u/. This trend could not be explained by biases present in perception of the unimodal visual stimuli. However, the change found in the McGurk fusion effect across vowel environments did correspond systematically with changes in second format frequency patterns across contexts. Second, the order of consonants in illusory combination percepts was found to depend on syllable type. This may be due to differences occuring across syllable contexts in the timecourses of inputs from the two modalities as delaying the auditory track of a vowel-consonant stimulus resulted in a change in the order of consonants perceived. Taken together, these results suggest that the speech perception system either fuses audiovisual inputs into a visually compatible percept with a similar second formant pattern to that of the acoustic stimulus or interleaves the information from different modalities, at a phonemic or subphonemic level, based on their relative arrival times.
Resumo:
The concept of attention has been used in many senses, often without clarifying how or why attention works as it does. Attention, like consciousness, is often described in a disembodied way. The present article summarizes neural models and supportive data and how attention is linked to processes of learning, expectation, competition, and consciousness. A key them is that attention modulates cortical self-organization and stability. Perceptual and cognitive neocortex is organized into six main cell layers, with characteristic sub-lamina. Attention is part of unified design of bottom-up, horizontal, and top-down interactions among indentified cells in laminar cortical circuits. Neural models clarify how attention may be allocated during processes of visual perception, learning and search; auditory streaming and speech perception; movement target selection during sensory-motor control; mental imagery and fantasy; and hallucination during mental disorders, among other processes.
Resumo:
How does the laminar organization of cortical circuitry in areas VI and V2 give rise to 3D percepts of stratification, transparency, and neon color spreading in response to 2D pictures and 3D scenes? Psychophysical experiments have shown that such 3D percepts are sensitive to whether contiguous image regions have the same relative contrast polarity (dark-light or lightdark), yet long-range perceptual grouping is known to pool over opposite contrast polarities. The ocularity of contiguous regions is also critical for neon color spreading: Having different ocularity despite the contrast relationship that favors neon spreading blocks the spread. In addition, half visible points in a stereogram can induce near-depth transparency if the contrast relationship favors transparency in the half visible areas. It thus seems critical to have the whole contrast relationship in a monocular configuration, since splitting it between two stereogram images cancels the effect. What adaptive functions of perceptual grouping enable it to both preserve sensitivity to monocular contrast and also to pool over opposite contrasts? Aspects of cortical development, grouping, attention, perceptual learning, stereopsis and 3D planar surface perception have previously been analyzed using a 3D LAMINART model of cortical areas VI, V2, and V4. The present work consistently extends this model to show how like-polarity competition between VI simple cells in layer 4 may be combined with other LAMINART grouping mechanisms, such as cooperative pooling of opposite polarities at layer 2/3 complex cells. The model also explains how the Metelli Rules can lead to transparent percepts, how bistable transparency percepts can arise in which either surface can be perceived as transparent, and how such a transparency reversal can be facilitated by an attention shift. The like-polarity inhibition prediction is consistent with lateral masking experiments in which two f1anking Gabor patches with the same contrast polarity as the target increase the target detection threshold when they approach the target. It is also consistent with LAMINART simulations of cortical development. Other model explanations and testable predictions will also be presented.