852 resultados para information networks


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural Networks have been successfully employed in different biomedical settings. They have been useful for feature extractions from images and biomedical data in a variety of diagnostic applications. In this paper, they are applied as a diagnostic tool for classifying different levels of gastric electrical uncoupling in controlled acute experiments on dogs. Data was collected from 16 dogs using six bipolar electrodes inserted into the serosa of the antral wall. Each dog underwent three recordings under different conditions: (1) basal state, (2) mild surgically-induced uncoupling, and (3) severe surgically-induced uncoupling. For each condition half-hour recordings were made. The neural network was implemented according to the Learning Vector Quantization model. This is a supervised learning model of the Kohonen Self-Organizing Maps. Majority of the recordings collected from the dogs were used for network training. Remaining recordings served as a testing tool to examine the validity of the training procedure. Approximately 90% of the dogs from the neural network training set were classified properly. However, only 31% of the dogs not included in the training process were accurately diagnosed. The poor neural-network based diagnosis of recordings that did not participate in the training process might have been caused by inappropriate representation of input data. Previous research has suggested characterizing signals according to certain features of the recorded data. This method, if employed, would reduce the noise and possibly improve the diagnostic abilities of the neural network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* Supported by INTAS 2000-626, INTAS YSF 03-55-1969, INTAS INNO 182, and TIC 2003-09319-c03-03.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of multi-agent routing in static telecommunication networks with fixed configuration is considered. The problem is formulated in two ways: for centralized routing schema with the coordinator-agent (global routing) and for distributed routing schema with independent agents (local routing). For both schemas appropriate Hopfield neural networks (HNN) are constructed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the problems in AI tasks solving by neurocomputing methods is a considerable training time. This problem especially appears when it is needed to reach high quality in forecast reliability or pattern recognition. Some formalised ways for increasing of networks’ training speed without loosing of precision are proposed here. The offered approaches are based on the Sufficiency Principle, which is formal representation of the aim of a concrete task and conditions (limitations) of their solving [1]. This is development of the concept that includes the formal aims’ description to the context of such AI tasks as classification, pattern recognition, estimation etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neural-like growing networks used in the intelligent system of recognition of images are under consideration in this paper. All operations made over the image on a pre-design stage and also classification and storage of the information about the images and their further identification are made extremely by mechanisms of neural-like networks without usage of complex algorithms requiring considerable volumes of calculus. At the conforming hardware support the neural network methods allow considerably to increase the effectiveness of the solution of the given class of problems, saving a high accuracy of result and high level of response, both in a mode of training, and in a mode of identification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Categorising visitors based on their interaction with a website is a key problem in Web content usage. The clickstreams generated by various users often follow distinct patterns, the knowledge of which may help in providing customised content. This paper proposes an approach to clustering weblog data, based on ART2 neural networks. Due to the characteristics of the ART2 neural network model, the proposed approach can be used for unsupervised and self-learning data mining, which makes it adaptable to dynamically changing websites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an extended behavior of networks of evolutionary processors. Usually, such nets are able to solve NP-complete problems working with symbolic information. Information can evolve applying rules and can be communicated though the net provided some constraints are verified. These nets are based on biological behavior of membrane systems, but transformed into a suitable computational model. Only symbolic information is communicated. This paper proposes to communicate evolution rules as well as symbolic information. This idea arises from the DNA structure in living cells, such DNA codes information and operations and it can be sent to other cells. Extended nets could be considered as a superset of networks of evolutionary processors since permitting and forbidden constraints can be written in order to deny rules communication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chaos control is a concept that recently acquiring more attention among the research community, concerning the fields of engineering, physics, chemistry, biology and mathematic. This paper presents a method to simultaneous control of deterministic chaos in several nonlinear dynamical systems. A radial basis function networks (RBFNs) has been used to control chaotic trajectories in the equilibrium points. Such neural network improves results, avoiding those problems that appear in other control methods, being also efficient dealing with a relatively small random dynamical noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we showed various approachs implemented in Artificial Neural Networks for network resources management and Internet congestion control. Through a training process, Neural Networks can determine nonlinear relationships in a data set by associating the corresponding outputs to input patterns. Therefore, the application of these networks to Traffic Engineering can help achieve its general objective: “intelligent” agents or systems capable of adapting dataflow according to available resources. In this article, we analyze the opportunity and feasibility to apply Artificial Neural Networks to a number of tasks related to Traffic Engineering. In previous sections, we present the basics of each one of these disciplines, which are associated to Artificial Intelligence and Computer Networks respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the issues of Ukrainian new three-level pension system are discussed. First, the paper presents the mathematical model that allows calculating the optimal size of contributions to the non-state pension fund. Next, the non-state pension fund chooses an Asset Management Company. To do so it is proposed to use an approach based on Kohonen networks to classify asset management companies that work in Ukrainian market. Further, when the asset management company is chosen, it receives the pension contributions of the participants of the non-pension fund. Asset Management Company has to invest these contributions profitably. This paper proposes an approach for choosing the most profitable investment project using decision trees. The new pension system has been lawfully ratified only four years ago and is still developing, that is why this paper is very important.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper is devoted to creation of cryptographic data security and realization of the packet mode in the distributed information measurement and control system that implements methods of optical spectroscopy for plasma physics research and atomic collisions. This system gives a remote access to information and instrument resources within the Intranet/Internet networks. The system provides remote access to information and hardware resources for the natural sciences within the Intranet/Internet networks. The access to physical equipment is realized through the standard interface servers (PXI, CАМАC, and GPIB), the server providing access to Ethernet devices, and the communication server, which integrates the equipment servers into a uniform information system. The system is used to make research task in optical spectroscopy, as well as to support the process of education at the Department of Physics and Engineering of Petrozavodsk State University.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One dominant feature of the modern manufacturing chains is the movement of goods. Manufacturing companies would remain an unprofitable investment if the supplies/logistics of raw materials, semi-finished products or final goods are not handled in an effective way. Both levels of a modern manufacturing chain-actual production and logistics-are characterized by continuous data creation at a much faster rate than they can be meaningfully analyzed and acted upon manually. Often, instant and reliable decisions need to be taken based on huge, previously inconceivable amounts of heterogeneous, contradictory or incomplete data. The paper will highlight aspects of information flows related to business process data visibility and observability in modern manufacturing networks. An information management platform developed in the framework of the EU FP7 project ADVANCE will be presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major drawback of artificial neural networks is their black-box character. Therefore, the rule extraction algorithm is becoming more and more important in explaining the extracted rules from the neural networks. In this paper, we use a method that can be used for symbolic knowledge extraction from neural networks, once they have been trained with desired function. The basis of this method is the weights of the neural network trained. This method allows knowledge extraction from neural networks with continuous inputs and output as well as rule extraction. An example of the application is showed. This example is based on the extraction of average load demand of a power plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

* Supported by projects CCG08-UAM TIC-4425-2009 and TEC2007-68065-C03-02

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of cancer diagnosis from multi-channel images using the neural networks is investigated. The goal of this work is to classify the different tissue types which are used to determine the cancer risk. The radial basis function networks and backpropagation neural networks are used for classification. The results of experiments are presented.