876 resultados para aristolochic acids
Resumo:
The present paper reports phase equilibrium experimental data for two systems composed by peanut oil or avocado seed oil + commercial oleic acid + ethanol + water at 298.2 K and different water contents in the solvent. The addition of water to the solvent reduces the loss of neutral oil in the alcoholic phase and improves the solvent selectivity. The experimental data were correlated by the NRTL and UNIQUAC models. The global deviations between calculated and experimental values were 0.63 % and 1.08 %, respectively, for the systems containing avocado seed oil. In the case of systems containing peanut oil those deviations were 0.65 % and 0.98 %, respectively. Such results indicate that both models were able to reproduce correctly the experimental data, although the NRTL model presented a better performance.
Resumo:
Annona (Annonaceae) is an important source of fruits in the Brazilian Cerrado and the Amazon Rainforest. Some Annona species are widely commercialized as fresh fruit or as frozen pulp. Seeds are accustomedly discarded. Our main goal was to analyze fatty acids profile from seeds of A. crassiflora and A. coriacea from Cerrado, A. montana from Amazon Forest, and three cultivars (A. cherimola cv. Madeira, A. cherimola x A. squamosa cv. Pink`s Mammonth and A. cherimola x A. squamosa cv. Gefner). The total oil yield ranged between 20 and 42% by weight of dry mass. The A cherimola x A. squamosa cv. Gefner has significantly higher total lipid yield than all other samples. 100 g of fruit of this species present 6-8 g of seeds. Considering the fruit production of Chile (over 221 ton of fruits/year), more than 1300 ton of seed/year could be obtained, which could provide at least 200 ton of seed oil. Oleic acid was predominant for most samples, but for A. montana linoleic acid was the most abundant FA. Phenotypic variation on FAME profile was observed. These new data are an urgent requirement for supporting conservation programs, mainly for Cerrado areas in Brazil.
Resumo:
The aim of this work was to Study biochemical variations of IAA (indole-3-acetic acid), ABA (abscisic acid). PAs (polyamines) and amino acids at endogenous levels, during seed germination in Ocotea catharinensis. Seeds were germinated in a vermiculite substratum (100%), samples being collected after 15, 30 and 60 days. Total amino acid levels decreased during the first 15 days. Followed by all increment at the end of germination. Among amino acids, higher concentration was observed in asparagine, this being the predominant amino acid during the whole germination period. Total PAs (free + conjugated) content increased during the first 15 days, followed by a decrease and stabilization between 30 and 60 days of germination. Among the PAs, free putrescine levels rose during the first 15 days, followed by a drop and Stabilization up to 60 days of germination, while spermidine and spermine (spm) contents diminished during the period. Only spin was detected in a conjugated form, with increasing concentrations starting from 30 days on. IAA levels increased during tire first 15 days. followed by a decrease and stabilization until the end of germination (60 days), while ABA contents dwindled during the first 15 days, with similar Values until the end of germination.
Resumo:
Fatty acids have been used in marine biogeochemistry as food chain biomarkers, but in freshwater these studies are rare. In order to evaluate the fatty acid potential as biomarkers in freshwater, their profile was analyzed during vitellogenesis in two fish species, in both waterfall and reservoir environments of the Paraiba do Sul River Basin. Detrivorous Hypostomus affinis and omnivorous Geophagus brasiliensis seem to elongate and desaturate polyunsaturated fatty acids (PUFA) and transfer them to the ovaries` phospholipids. Waterfall Geophagus brasiliensis have more highly unsaturated fatty acids in the liver, but in the reservoir, accumulation mainly occurs in muscle and ovary triglycerides, suggesting trophic opportunism and a plasticity during vitellogenesis. In Hypostomus affinis, PUFA alteration occurs only in the reservoir, suggesting a high phytoplankton occurrence. Eutrophication and water speed is reflected in Hypostomus affinis ovaries by higher PUFAn3 and bacterial fatty acids. As in marine environments, analysis of mono- and polyunsaturated fatty acids during vitellogenesis can be used as a tool in food chain studies in freshwater.
Resumo:
Free fatty acids (FFA) are important mediators of proton transport across membranes. However, information concerning the influence of the Structural features of both FFA and the membrane environment on the proton translocation mechanisms across phospholipid membranes is relatively scant. The effects of FFA chain length, unsaturation and membrane composition on proton transport have been addressed in this study by means of electrical measurements in planar lipid bilayers. Proton conductance (G(H)(+)) was calculated from open-circuit voltage and short-circuit current density measurements. We found that cis-unsaturated FFA caused a more pronounced effect on proton transport as compared to Saturated and trans-unsaturated FFA. Cholesterol and cardiolipin decreased membrane leak conductance. Cardiolipin also decreased proton conductance. These effects indicate a dual modulation of protein-independent proton transport by FFA: through a flip-flop mechanism and by modifying a proton diffusional pathway. Moreover the membrane phospholipid composition was shown to importantly affect both processes. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In animal models of diet-induced obesity, the activation of an inflammatory response in the hypothalamus produces molecular and functional resistance to the anorexigenic hormones insulin and leptin. The primary events triggered by dietary fats that ultimately lead to hypothalamic cytokine expression and inflammatory signaling are unknown. Here, we test the hypothesis that dietary fats act through the activation of toll-like receptors 2/4 and endoplasmic reticulum stress to induce cytokine expression in the hypothalamus of rodents. According to our results, long-chain saturated fatty acids activate predominantly toll-like receptor 4 signaling, which determines not only the induction of local cytokine expression but also promotes endoplasmic reticulum stress. Rats fed on a monounsaturated fat-rich diet do not develop hypothalamic leptin resistance, whereas toll-like receptor 4 loss-of-function mutation and immunopharmacological inhibition of toll-like receptor 4 protects mice from diet-induced obesity. Thus, toll-like receptor 4 acts as a predominant molecular target for saturated fatty acids in the hypothalamus, triggering the intracellular signaling network that induces an inflammatory response, and determines the resistance to anorexigenic signals.
Resumo:
Short chain fatty acids (SCFAs) are metabolic by products of anerobic bacteria fermentation. These fatty acids, despite being an important fuel for colonocytes, are also modulators of leukocyte function. The aim of this study was to evaluate the effects of SCFAs (acetate, propionate, and butyrate) on function of neutrophils, and the possible mechanisms involved. Neutrophils obtained from rats by intraperitoneal lavage 4 h after injection of oyster glycogen solution (1%) were treated with non toxic concentrations of the fatty acids. After that, the following measurements were performed: phagocytosis and destruction of Candida albicans, production of ROS (O(2)(center dot-), H(2)O(2), and HOCl) and degranulation. Gene expression (p47(phox) and p22(phox)) and protein phosphorylation (p47(phox)) were analyzed by real time reverse transcriptase chain reaction (RT-PCR) and Western blotting, respectively. Butyrate inhibited phagocytosis and killing of C. albicans. This SCFA also had an inhibitory effect on production of O(2)(center dot-), H(2)O(2), and HOCI by neutrophils stimulated with PMA or fMLP. This effect of butyrate was not caused by modulation of expression of NADPH oxidase subunits (p47(phox) and p22(phox)) but it was in part due to reduced levels of p47(phox) phosphorylation and an increase in the concentration of cyclic AMP. Acetate increased the production of O(2)(center dot-) and H(2)O(2), in the absence of stimuli but had no effect on phagocytosis and killing of C. albicans. Propionate had no effect on the parameters studied. These results suggest that butyrate can modulate neutrophil function, and thus could be important in inflammatory neutrophil-associated diseases. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
The reported effects of different families of fatty acids (FA; SFA, MUFA, n-3 and n-6 PUFA) on human health and the importance of macrophage respiratory burst and cytokine release to immune defence led us to examine the influence of palmitic acid (PA), oleic acid (OA), linoleic acid, arachidonic acid, EPA and DHA on macrophage function. We determined fungicidal activity, reactive oxygen species (ROS) and cytokine production after the treatment of J774 cells with non-toxic concentrations of the FA. PA had a late and discrete stimulating effect on ROS production, which may be associated with the reduced fungicidal activity of the cells after treatment with this FA. OA presented a sustained stimulatory effect on ROS production and increased fungicidal activity of the cells, suggesting that enrichment of diets with OA may be beneficial for pathogen elimination. The effects of PUFA on ROS production were time-and dose-dependently regulated, with no evident differences between n-3 and n-6 PUFA. It was worth noting that most changes induced after stimulation of the cells with lipopolysaccharide were suppressed by the FA. The present results suggest that supplementation of the diet with specific FA, not classes of FA, might enable an improvement in host defence mechanisms or a reduction in adverse immunological reactions.
Resumo:
Inflammation is a crucial step for the wound healing process. The effect of linoleic and oleic acids on the inflammatory response of the skin during the healing process and on the release of pro-inflammatory cytokines by rat neutrophils in vitro was investigated. A wound in the dorsal surface of adult rats was performed and fatty acids were then topically administered. Both oleic and linoleic acids increased the wound healing tissue mass. The total protein and DNA contents of the wounds were increased by the treatment with linoleic acid. The treatments with oleic and linoleic acids did not affect vascular permeability. However, the number of neutrophils in the wounded area and air pouches was increased and the thickness of the necrotic cell layer edge around the wound was decreased. A dose-dependent increase in vascular endothelial growth factor-alpha (VEGF-alpha) and interleukin-1 beta (IL-1 beta) by neutrophils incubated in the presence of oleic and linoleic acid was observed. Oleic acid was able to stimulate also the production of cytokine-induced neutrophil chemoattractant in inflammation 2 alphalbeta (CINC-2 alpha/beta). This pro-inflammatory effect of oleic and linoleic acids may speed up the wound healing process. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
Many macrophage functions are modulated by fatty acids (FAs), including cytokine release, such as tumor necrosis factor-alpha (TNF-alpha). TNF-alpha is of great interest due to its role in the inflammation process observed in several diseases such as rheumatoid arthritis, atherosclerosis, and obesity. However, the mechanisms by which FA effects occur have not been completely elucidated yet. In this study, we used a mouse monocyte lineage (J774 cells) to evaluate the effect of 50 and 100 mu M of saturated (palmitic and stearic acids), monounsaturated (oleic acid) and polyunsaturated (linoleic acid) FAs on TNF-alpha production. Alterations in gene expression, poly(A) tail length and activation of transcription factors were evaluated. Oleic and linoleic acids, usually known as neutral or pro-inflammatory FA, inhibited LPS-induced TNF-alpha secretion by the cells. Saturated FAs were potent inducers of TNF-alpha expression and secretion under basal and inflammatory conditions (in the presence of LPS). Although the effect of the saturated FA was similar, the mechanism involved in each case seem to be distinct, as palmitic acid increased EGR-1 and CREB binding activity and stearic acid increased mRNA poly(A) tail. These results may contribute to the understanding of the molecular mechanisms by which saturated FAs modulate the inflammatory response and may lead to design of associations of dietary and pharmacological strategies to counteract the pathological effects of TNF-alpha.
Resumo:
Aberrant alterations in glucose and lipid concentrations and their pathways of metabolism are a hallmark of diabetes. However, much less is known about alterations in concentrations of amino acids and their pathways of metabolism in diabetes. In this review we have attempted to highlight, integrate and discuss common alterations in amino acid metabolism in a wide variety of cells and tissues and relate these changes to alterations in endocrine, physiologic and immune function in diabetes.
Resumo:
Previous studies have shown that lipids are transferred from lymphocytes (Ly) to different cell types including macrophages. enterocytes, and pancreatic beta cells in co-culture This study investigated whether [(14)C]-labeled fatty acids (FA) can be transferred from Ly to skeletal muscle (SM), and the effects of exercise on such phenomenon Ly obtained from exercised (EX) and control (C) male Wistar rats were preloaded with the [(14)C]-labeled free FA palmitic (PA), oleic (OA), linoleic (LA), or arachidonic (AA) Radioactively loaded Ly were then co-cultured with SM from the same Ly donor animals Substantial amounts of FA were transferred to SM being the profile PA = OA > AA > LA to the C group. and PA > OA > LA > AA to the EX group These FA were incorporated predominantly as phospholipids (PA = 66 75%: OA = 63 09%, LA = 43 86%, AA - 47 40%) in the C group and (PA = 63 99% OA = 52 72%, LA = 55 99%, AA = 63 40%) in the EX group Also in this group, the remaining radioactivity from AA, LA, and OA acids was mainly incorpoiated in structural and energetic lipids These results support the hypothesis that Ly are able to export lipids to SM in co-culture Furthermore. exercise modulates the lipid transference profile, and its incorporation on SM The overall significance of this phenomenon in vivo remains to be elucidated. Copyright (C) 2010 John Wiley & Sons, Ltd
Resumo:
Short chain fatty acids (SCFAs) are fermentation products of anaerobic bacteria. More than just being an important energy source for intestinal epithelial cells, these compounds are modulators of leukocyte function and potential targets for the development of new drugs. The aim of this study was to evaluate the effects of SCFAs (acetate, propionate and butyrate) on production of nitric oxide (NO) and proinflammatory cytokines [tumor necrosis factor alpha (TNF-alpha) and cytokine-induced neutrophil chemoattractant-2 (CINC-2 alpha beta)] by rat neutrophils. The involvement of nuclear factor kappa B (NF-kappa B) and histone deacetylase (HDAC) was examined. The effect of butyrate was also investigated in vivo after oral administration of tributyrin (a pro-drug of butyrate). Propionate and butyrate diminished TNF-alpha, CINC-2 alpha beta and NO production by LPS-stimulated neutrophils. We also observed that these fatty acids inhibit HDAC activity and NF-kappa B activation, which might be involved in the attenuation of the LPS response. Products of cyclooxygenase and 5-lipoxygenase are not involved in the effects of SCFAs as indicated by the results obtained with the inhibitors of these enzymes. The recruitment of neutrophils to the peritonium after intraperitoneal administration of a glycogen solution (1%) and the ex vivo production of cytokines and NO by neutrophils were attenuated in rats that previously received tributyrin. These results argue that this triglyceride may be effective in the treatment of inflammatory conditions. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
Resumo:
SCFAs (short-chain fatty acids) are produced by anaerobic bacterial fermentation. Increased concentrations of these fatty acids are observed in inflammatory conditions, such as periodontal disease, and at sites of anaerobic infection. In the present study, the effect of the SCFAs acetate, propionate and butyrate on neutrophil chemotaxis and migration was investigated. Experiments were carried out in rats and in vitro. The following parameters were measured: rolling, adherence, expression of adhesion molecules in neutrophils (L-selectin and beta 2 integrin), transmigration, air pouch influx of neutrophils and production of cytokines [CINC-2 alpha beta (cytokine-induced neutrophil chemoattractant-2 alpha beta), IL-1 beta (interleukin-1 beta), MIP-1 alpha (macrophage inflammatory protein-1 alpha) and TNF-alpha (tumour necrosis factor-alpha)]. SCFAs induced in vivo neutrophil migration and increased the release of CINC-2 alpha beta into the air pouch. These fatty acids increased the number of rolling and adhered cells as evaluated by intravital microscopy. SCFA treatment increased L-selectin expression on the neutrophil surface and L-selectin mRNA levels, but had no effect on the expression of beta 2 integrin. Propionate and butyrate also increased in vitro transmigration of neutrophils. These results indicate that SCFAs produced by anaerobic bacteria raise neutrophil migration through increased L-selectin expression on neutrophils and CINC-2 alpha beta release.
Resumo:
The final contents of total and individual trans-fatty acids of sunflower oil, produced during the deacidification step of physical refining were obtained using a computational simulation program that considered cis-trans isomerization reaction features for oleic, linoleic, and linolenic acids attached to the glycerol part of triacylglycerols. The impact of process variables, such as temperature and liquid flow rate, and of equipment configuration parameters, such as liquid height, diameter, and number of stages, that influence the retention time of the oil in the equipment was analyzed using the response-surface methodology (RSM). The computational simulation and the RSM results were used in two different optimization methods, aiming to minimize final levels of total and individual trans-fatty acids (trans-FA), while keeping neutral oil loss and final oil acidity at low values. The main goal of this work was to indicate that computational simulation, based on a careful modeling of the reaction system, combined with optimization could be an important tool for indicating better processing conditions in industrial physical refining plants of vegetable oils, concerning trans-FA formation.