861 resultados para Video-based interface
Resumo:
"Submitted to the Illinois General Assembly pursuant to section 21-1101(j) of the Illinois Public Utilities Act."
Resumo:
Se presenta el desarrollo de una interface de recuperación de información para catálogos en línea de acceso público (plataforma CDS/ISIS), basada en el concepto de similaridad para generar los resultados de una búsqueda ordenados por posible relevancia. Se expresan los fundamentos teóricos involucrados, para luego detallar la forma en que se efectuó su aplicación tecnológica, explícita a nivel de programación. Para finalizar se esbozan los problemas de implementación según el entorno
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
We investigated the accuracy and reliability of observational kinematic gait assessments performed via a low-bandwidth Internet link (118 kbit/s) and a higher-speed Internet link (128 kbit/s). Twenty-four subjects were randomized to either bandwidth group. Gait was assessed with the Gait Assessment Rating Scale (GARS) in the traditional manner, which is from video-recordings, and with repeated measurements via the online method. Online assessment was found to provide as accurate a measure of gait performance as the traditional assessment (limits of agreement
Resumo:
With the rapid increase in both centralized video archives and distributed WWW video resources, content-based video retrieval is gaining its importance. To support such applications efficiently, content-based video indexing must be addressed. Typically, each video is represented by a sequence of frames. Due to the high dimensionality of frame representation and the large number of frames, video indexing introduces an additional degree of complexity. In this paper, we address the problem of content-based video indexing and propose an efficient solution, called the Ordered VA-File (OVA-File) based on the VA-file. OVA-File is a hierarchical structure and has two novel features: 1) partitioning the whole file into slices such that only a small number of slices are accessed and checked during k Nearest Neighbor (kNN) search and 2) efficient handling of insertions of new vectors into the OVA-File, such that the average distance between the new vectors and those approximations near that position is minimized. To facilitate a search, we present an efficient approximate kNN algorithm named Ordered VA-LOW (OVA-LOW) based on the proposed OVA-File. OVA-LOW first chooses possible OVA-Slices by ranking the distances between their corresponding centers and the query vector, and then visits all approximations in the selected OVA-Slices to work out approximate kNN. The number of possible OVA-Slices is controlled by a user-defined parameter delta. By adjusting delta, OVA-LOW provides a trade-off between the query cost and the result quality. Query by video clip consisting of multiple frames is also discussed. Extensive experimental studies using real video data sets were conducted and the results showed that our methods can yield a significant speed-up over an existing VA-file-based method and iDistance with high query result quality. Furthermore, by incorporating temporal correlation of video content, our methods achieved much more efficient performance.
Resumo:
Purpose: This pilot study explored the feasibility and effectiveness of an Internet-based telerehabilitation application for the assessment of motor speech disorders in adults with acquired neurological impairment. Method: Using a counterbalanced, repeated measures research design, 2 speech-language pathologists assessed 19 speakers with dysarthria on a battery of perceptual assessments. The assessments included a 19-item version of the Frenchay Dysarthria Assessment (FDA; P. Enderby, 1983), the Assessment of Intelligibility of Dysarthric Speech (K. M. Yorkston & D. R. Beukelman, 1981), perceptual analysis of a speech sample, and an overall rating of severity of the dysarthria. One assessment was conducted in the traditional face-to-face manner, whereas the other assessment was conducted using an online, custom-built telerehabilitation application. This application enabled real-time videoconferencing at 128 kb/s and the transfer of store-and-forward audio and video data between the speaker and speech-language pathologist sites. The assessment methods were compared using the J.M.Bland and D.G.Altman (1986, 1999) limits-of-agreement method and percentage level of agreement between the 2 methods. Results: Measurements of severity of dysarthria, percentage intelligibility in sentences, and most perceptual ratings made in the telerehabilitation environment were found to fall within the clinically acceptable criteria. However, several ratings on the FDA were not comparable between the environments, and explanations for these results were explored. Conclusions: The online assessment of motor speech disorders using an Internet-based telerehabilitation system is feasible. This study suggests that with additional refinement of the technology and assessment protocols, reliable assessment of motor speech disorders over the Internet is possible. Future research methods are outlined.
Resumo:
Hydrophobins are small (similar to 100 aa) proteins that have an important role in the growth and development of mycelial fungi. They are surface active and, after secretion by the fungi, self-assemble into amphipathic membranes at hydrophobic/hydrophilic interfaces, reversing the hydrophobicity of the surface. In this study, molecular dynamics simulation techniques have been used to model the process by which a specific class I hydrophobin, SC3, binds to a range of hydrophobic/ hydrophilic interfaces. The structure of SC3 used in this investigation was modeled based on the crystal structure of the class II hydrophobin HFBII using the assumption that the disulfide pairings of the eight conserved cysteine residues are maintained. The proposed model for SC3 in aqueous solution is compact and globular containing primarily P-strand and coil structures. The behavior of this model of SC3 was investigated at an air/water, an oil/water, and a hydrophobic solid/water interface. It was found that SC3 preferentially binds to the interfaces via the loop region between the third and fourth cysteine residues and that binding is associated with an increase in a-helix formation in qualitative agreement with experiment. Based on a combination of the available experiment data and the current simulation studies, we propose a possible model for SC3 self-assembly on a hydrophobic solid/water interface.
Resumo:
Designer peptides have recently been developed as building blocks for novel self-assembled materials with stimuli-responsive properties. To date, such materials have been based on self-assembly in bulk aqueous solution or at solid-fluid interfaces. We have designed a 21-residue peptide, AM1, as a stimuli-responsive surfactant that switches molecular architectures at a fluid-fluid interface in response to changes in bulk aqueous solution composition. In the presence of divalent zinc at neutral pH, the peptide forms a mechanically strong 'film state'. In the absence of metal ions or at acid pH, the peptide adsorbs to form a mobile 'detergent state'. The two interfacial states can be actively and reversibly switched. Switching between the two states by a change in pH or the addition of a chelating agent leads to rapid emulsion coalescence or foam collapse. This work introduces a new class of surfactants that offer an environmentally friendly approach to control the stability of interfaces in foams, emulsions and fluid-fluid interfaces more generally.
Resumo:
T he international FANTOM consortium aims to produce a comprehensive picture of the mammalian transcriptome, based upon an extensive cDNA collection and functional annotation of full-length enriched cDNAs. The previous dataset, FANTOM(2), comprised 60,770 full- length enriched cDNAs. Functional annotation revealed that this cDNA dataset contained only about half of the estimated number of mouse protein- coding genes, indicating that a number of cDNAs still remained to be collected and identified. To pursue the complete gene catalog that covers all predicted mouse genes, cloning and sequencing of full- length enriched cDNAs has been continued since FANTOM2. In FANTOM3, 42,031 newly isolated cDNAs were subjected to functional annotation, and the annotation of 4,347 FANTOM2 cDNAs was updated. To accomplish accurate functional annotation, we improved our automated annotation pipeline by introducing new coding sequence prediction programs and developed a Web- based annotation interface for simplifying the annotation procedures to reduce manual annotation errors. Automated coding sequence and function prediction was followed with manual curation and review by expert curators. A total of 102,801 full- length enriched mouse cDNAs were annotated. Out of 102,801 transcripts, 56,722 were functionally annotated as protein coding ( including partial or truncated transcripts), providing to our knowledge the greatest current coverage of the mouse proteome by full- length cDNAs. The total number of distinct non- protein- coding transcripts increased to 34,030. The FANTOM3 annotation system, consisting of automated computational prediction, manual curation, and. nal expert curation, facilitated the comprehensive characterization of the mouse transcriptome, and could be applied to the transcriptomes of other species.
Resumo:
We have used a telerehabilitation system (eREHAB) to remotely assess acquired language disorders via the Internet. The system was used to establish a 128 kbit/s videoconference between two sites and allowed a remote language assessment to be conducted using the standardized Boston Diagnostic Aphasia Examination (BDAE). The system had the capacity to display text and images, and could play pre-recorded instructions to the participant via various built-in tools. A touch screen allowed tasks involving picture identification to be completed easily. Eighteen participants with a diagnosis of an acquired language disorder were simultaneously assessed using the eREHAB system, and in the traditional face-to-face manner by two speech pathologists. There was very high agreement between the two assessors, with weighted kappa scores of 0.8–1.0 for 88% of the sub-tests of the BDAE. There was also high agreement (80–100%) and high kappa scores (0.67–0.90) between assessors on the six rating scales relating to language characteristics. The agreement between the two assessors for the diagnosis of the type of aphasia was 83%. Limitations of the system related mainly to problems inherent in IP videoconferencing. The inability to maintain the preferred speed of 128 kbit/s for the duration of the videoconference and the resultant increase in video and audio breakup and latency affected the clinician’s ability to administer the BDAE with the same ease and accuracy as in face-to-face administration. These difficulties were exacerbated when participants presented with a moderate to severe language disorder, auditory comprehension deficits or significant hearing loss. Despite these limitations, a valid assessment of language disorder was found to be feasible via this telerehabilitation application.
Resumo:
Scanning capacitance microscopy (SCM) measurement is a proposed tool for dopant profile extraction for semiconductor material. The influence of interface traps on SCM dC/dV data is still unclear. In this paper we report on the simulation work used to study the nature of SCM dC/dV data in the presence of interface traps. A technique to correctly simulate dC/dV of SCM measurement is then presented based on our justification. We also analyze how charge of interface traps surrounding SCM probe would affect SCM dC/dV due the small SCM probe dimension.
Resumo:
Current image database metadata schemas require users to adopt a specific text-based vocabulary. Text-based metadata is good for searching but not for browsing. Existing image-based search facilities, on the other hand, are highly specialised and so suffer similar problems. Wexelblat's semantic dimensional spatial visualisation schemas go some way towards addressing this problem by making both searching and browsing more accessible to the user in a single interface. But the question of how and what initial metadata to enter a database remains. Different people see different things in an image and will organise a collection in equally diverse ways. However, we can find some similarity across groups of users regardless of their reasoning. For example, a search on Amazon.com returns other products also, based on an averaging of how users navigate the database. In this paper, we report on applying this concept to a set of images for which we have visualised them using traditional methods and the Amazon.com method. We report on the findings of this comparative investigation in a case study setting involving a group of randomly selected participants. We conclude with the recommendation that in combination, the traditional and averaging methods would provide an enhancement to current database visualisation, searching, and browsing facilities.
Resumo:
Users of safety-critical systems are expected to effectively control or monitor complex systems, with errors potentially leading to catastrophe. For such systems, safety is of paramount importance and must be designed into the human-machine interface. While many case studies show how inadequate design practice led to poor safety and usability, concrete guidance on good design practices is scarce. The paper argues that the pattern language paradigm, widely used in the software design community, is a suitable means of documenting appropriate design strategies. We discuss how typical usability-related properties (e.g., flexibility) need some adjustment to be used for assessing safety-critical systems, and document a pattern language, based on corresponding "safety-usability" principles
Resumo:
This work has, as its objective, the development of non-invasive and low-cost systems for monitoring and automatic diagnosing specific neonatal diseases by means of the analysis of suitable video signals. We focus on monitoring infants potentially at risk of diseases characterized by the presence or absence of rhythmic movements of one or more body parts. Seizures and respiratory diseases are specifically considered, but the approach is general. Seizures are defined as sudden neurological and behavioural alterations. They are age-dependent phenomena and the most common sign of central nervous system dysfunction. Neonatal seizures have onset within the 28th day of life in newborns at term and within the 44th week of conceptional age in preterm infants. Their main causes are hypoxic-ischaemic encephalopathy, intracranial haemorrhage, and sepsis. Studies indicate an incidence rate of neonatal seizures of 0.2% live births, 1.1% for preterm neonates, and 1.3% for infants weighing less than 2500 g at birth. Neonatal seizures can be classified into four main categories: clonic, tonic, myoclonic, and subtle. Seizures in newborns have to be promptly and accurately recognized in order to establish timely treatments that could avoid an increase of the underlying brain damage. Respiratory diseases related to the occurrence of apnoea episodes may be caused by cerebrovascular events. Among the wide range of causes of apnoea, besides seizures, a relevant one is Congenital Central Hypoventilation Syndrome (CCHS) \cite{Healy}. With a reported prevalence of 1 in 200,000 live births, CCHS, formerly known as Ondine's curse, is a rare life-threatening disorder characterized by a failure of the automatic control of breathing, caused by mutations in a gene classified as PHOX2B. CCHS manifests itself, in the neonatal period, with episodes of cyanosis or apnoea, especially during quiet sleep. The reported mortality rates range from 8% to 38% of newborn with genetically confirmed CCHS. Nowadays, CCHS is considered a disorder of autonomic regulation, with related risk of sudden infant death syndrome (SIDS). Currently, the standard method of diagnosis, for both diseases, is based on polysomnography, a set of sensors such as ElectroEncephaloGram (EEG) sensors, ElectroMyoGraphy (EMG) sensors, ElectroCardioGraphy (ECG) sensors, elastic belt sensors, pulse-oximeter and nasal flow-meters. This monitoring system is very expensive, time-consuming, moderately invasive and requires particularly skilled medical personnel, not always available in a Neonatal Intensive Care Unit (NICU). Therefore, automatic, real-time and non-invasive monitoring equipments able to reliably recognize these diseases would be of significant value in the NICU. A very appealing monitoring tool to automatically detect neonatal seizures or breathing disorders may be based on acquiring, through a network of sensors, e.g., a set of video cameras, the movements of the newborn's body (e.g., limbs, chest) and properly processing the relevant signals. An automatic multi-sensor system could be used to permanently monitor every patient in the NICU or specific patients at home. Furthermore, a wire-free technique may be more user-friendly and highly desirable when used with infants, in particular with newborns. This work has focused on a reliable method to estimate the periodicity in pathological movements based on the use of the Maximum Likelihood (ML) criterion. In particular, average differential luminance signals from multiple Red, Green and Blue (RGB) cameras or depth-sensor devices are extracted and the presence or absence of a significant periodicity is analysed in order to detect possible pathological conditions. The efficacy of this monitoring system has been measured on the basis of video recordings provided by the Department of Neurosciences of the University of Parma. Concerning clonic seizures, a kinematic analysis was performed to establish a relationship between neonatal seizures and human inborn pattern of quadrupedal locomotion. Moreover, we have decided to realize simulators able to replicate the symptomatic movements characteristic of the diseases under consideration. The reasons is, essentially, the opportunity to have, at any time, a 'subject' on which to test the continuously evolving detection algorithms. Finally, we have developed a smartphone App, called 'Smartphone based contactless epilepsy detector' (SmartCED), able to detect neonatal clonic seizures and warn the user about the occurrence in real-time.
Resumo:
Trehalose is a well known protector of biostructures like liposomes and proteins during freeze-drying, but still today there is a big debate regarding its mechanism of action. In previous experiments we have shown that trehalose is able to protect a non-phospholipid-based liposomal adjuvant (designated CAF01) composed of the cationic dimethyldioctadecylammonium (DDA) and trehalose 6,6-dibehenate (TDB) during freeze-drying [D. Christensen, C. Foged, I. Rosenkrands, H.M. Nielsen, P. Andersen, E.M. Agger, Trehalose preserves DDA/TDB liposomes and their adjuvant effect during freeze-drying, Biochim. Biophys. Acta, Biomembr. 1768 (2007) 2120-2129]. Furthermore it was seen that TDB is required for the stabilizing effect of trehalose. Herein, we show using the Langmuir-Blodgett technique that a high concentration of TDB present at the water-lipid interface results in a surface pressure around 67 mN/m as compared to that of pure DDA which is approximately 47 mN/m in the compressed state. This indicates that the attractive forces between the trehalose head group of TDB and water are greater than those between the quaternary ammonium head group of DDA and water. Furthermore, addition of trehalose to a DDA monolayer containing small amounts of TDB also increases the surface pressure, which is not observed in the absence of TDB. This suggests that even small amounts of trehalose groups on TDB present at the water-lipid interface associate free trehalose to the liposome surface, presumably by hydrogen bonding between the trehalose head groups of TDB and the free trehalose molecules. Hence, for CAF01 the TDB component not only stabilizes the cationic liposomes and enhances the immune response but also facilitates the cryo-/lyoprotection by trehalose through direct interaction with the head group of TDB. Furthermore the results indicate that direct interaction with liposome surfaces is necessary for trehalose to enable protection during freeze-drying.