Reversible active switching of the mechanical properties of a peptide film at a fluid-fluid interface
Contribuinte(s) |
Vincent Dusastre |
---|---|
Data(s) |
01/01/2006
|
Resumo |
Designer peptides have recently been developed as building blocks for novel self-assembled materials with stimuli-responsive properties. To date, such materials have been based on self-assembly in bulk aqueous solution or at solid-fluid interfaces. We have designed a 21-residue peptide, AM1, as a stimuli-responsive surfactant that switches molecular architectures at a fluid-fluid interface in response to changes in bulk aqueous solution composition. In the presence of divalent zinc at neutral pH, the peptide forms a mechanically strong 'film state'. In the absence of metal ions or at acid pH, the peptide adsorbs to form a mobile 'detergent state'. The two interfacial states can be actively and reversibly switched. Switching between the two states by a change in pH or the addition of a chelating agent leads to rapid emulsion coalescence or foam collapse. This work introduces a new class of surfactants that offer an environmentally friendly approach to control the stability of interfaces in foams, emulsions and fluid-fluid interfaces more generally. |
Identificador | |
Idioma(s) |
eng |
Publicador |
Nature Publishing Group |
Palavras-Chave | #Chemistry, Physical #C1 #290699 Chemical Engineering not elsewhere classified #291804 Nanotechnology #299999 Engineering and Technology not elsewhere classified #670499 Other #670799 Other #670199 Processed food products and beverages not elsewhere classified |
Tipo |
Journal Article |