954 resultados para Vertical pull-out failure
Resumo:
An experimental laboratory investigation was carried out to assess the structural adequacy of a disused PHO Class Flat Bottom Rail Wagon (FRW) for a single lane low volume road bridge application as per the design provisions of the Australian Bridge Design Standard AS 5100(2004). The investigation also encompassed a review into the risk associated with the pre-existing damage in wagons incurred during their service life on rail. The main objective of the laboratory testing of the FRW was to physically measure its performance under the same applied traffic loading it would be required to resist as a road bridge deck. In order to achieve this a full width (5.2m) single lane, single span (approximately 10m), simply supported bridge would be required to be constructed and tested in a structural laboratory. However, the available clear spacing between the columns of the loading portal frame encountered within the laboratory was insufficient to accommodate the 5.2m wide bridge deck excluding clearance normally considered necessary in structural testing. Therefore, only half of the full scale bridge deck (single FRW of width 2.6m) was able to be accommodated and tested; with the continuity of the bridge deck in the lateral direction applied as boundary constraints along the full length of the FRW at six selected locations. This represents a novel approach not yet reported in the literature for bridge deck testing to the best of the knowledge of the author. The test was carried out under two loadings provided in AS 5100 (2004) – one stationary W80 wheel load and the second a moving axle load M1600. As the bridge investigated in the study is a single lane single span low volume road bridge, the risk of pre-existing damage and the expected high cycle fatigue failure potential was assessed as being minimal and hence the bridge deck was not tested structurally for fatigue/ fracture. The high axle load requirements have instead been focussed upon the investigation into the serviceability and ultimate limit state requirements. The testing regime adopted however involved extensive recording of strains and deflections at several critical locations of the FRW. Three locations of W80 point load and two locations of the M1600 Axle load were considered for the serviceability testing; the FRW was also tested under the ultimate load dictated by the M1600. The outcomes of the experimental investigation have demonstrated that the FRW is structurally adequate to resist the prescribed traffic loadings outlaid in AS 5100 (2004). As the loading was directly applied on to the FRW, the laboratory testing is assessed as being significantly conservative. The FRW bridge deck in the field would only resist the load transferred by the running platform, where, depending on the design, composite action might exist – thereby the share of the loading which needs to be resisted by the FRW would be smaller than the system tested in the lab. On this basis, a demonstration bridge is under construction at the time of writing this thesis and future research will involve field testing in order to assess its performance.
Resumo:
Lower fruit and vegetable intake among socioeconomically disadvantaged groups has been well documented, and may be a consequence of a higher consumption of take-out foods. This study examined whether, and to what extent, take-out food consumption mediated (explained) the association between socioeconomic position and fruit and vegetable intake. A cross-sectional postal survey was conducted among 1500 randomly selected adults aged 25–64 years in Brisbane, Australia in 2009 (response rate = 63.7%, N = 903). A food frequency questionnaire assessed usual daily servings of fruits and vegetables (0 to 6), overall take-out consumption (times/week) and the consumption of 22 specific take-out items (never to ≥once/day). These specific take-out items were grouped into “less healthy” and “healthy” choices and indices were created for each type of choice (0 to 100). Socioeconomic position was ascertained by education. The analyses were performed using linear regression, and a bootstrap re-sampling approach estimated the statistical significance of the mediated effects. Mean daily serves of fruits and vegetables was 1.89 (SD 1.05) and 2.47 (SD 1.12) respectively. The least educated group were more likely to consume fewer serves of fruit (B= –0.39, p<0.001) and vegetables (B= –0.43, p<0.001) compared with the highest educated. The consumption of “less healthy” take-out food partly explained (mediated) education differences in fruit and vegetable intake; however, no mediating effects were observed for overall and “healthy” take-out consumption. Regular consumption of “less healthy” take-out items may contribute to socioeconomic differences in fruit and vegetable intake, possibly by displacing these foods.
Resumo:
This paper reports a longitudinal analysis of 20 necessity driven micro-entrepreneurs operating in Beira, Central Mozambique, who received funding and training from the same NGO to establish or grow their business activities and reports the development of these entrepreneurs in terms of their acquired entrepreneurial potential for long-term success. The results indicate there is a process of entrepreneurial becoming that is not just about access to finance but especially learning and, when successful, this process supports the transformation of survival micro-enterprises into entrepreneurial micro-businesses. The concept of ‘becoming’ contains an implicit temporal dimension. Becoming suggests a transformation over time: a change from what one is already. In this study, we witness a significant change in understanding how a business needs to operate, in recognizing opportunities, thinking more creatively, and building self-confidence.
Resumo:
Using interview data on LGBT young peoples’ policing experiences, I argue policing practices work to constrain public visibilities of sexual and gender diversity in public spaces. Police actions recounted by LGBT young people suggest the workings of a certain kind of visuality (Mason, 2002) and evidenced more subtle actions that sought to constrain, regulate, and punish public visibilities of sexual and gender diversity. Aligning with the work of sexualities academics and theorists, this paper suggests that, like violence is itself a bodily spectacle from which onlookers come to know things, policing works to subtly constrain public visibilities of “queerness”. Policing interactions with LGBT young people serves the purpose of visibly yet unverifiably (Mason, 2002) regulating displays of sexual and gender diversity in public spaces. The paper concludes noting how police actions are nonetheless visible and therefore make knowable to the public the importance of keeping same sex intimacy invisible in public spaces.
Resumo:
The concept of ‘strategic dalliances’– defined as non-committal relationships that companies can ‘dip in and out of,’ or dally with, while simultaneously maintaining longer-term strategic partnerships with other firms and suppliers – has emerged as a promising strategy by which organizations can create discontinuous innovations. But does this approach work equally well for every sector? Moreover, how can these links be effectively used to foster the process of discontinuous innovation? Toward assessing the role that industry clockspeed plays in the success or failure of strategic dalliances, we provide case study evidence from Twister BV, an upstream oil and gas technology provider, and show that strategic dalliances can be an enabler for the discontinuous innovation process in slow clockspeed industries. Implications for research and practice are discussed, and conclusions from our findings are drawn.
Resumo:
Purpose of this paper – The purpose of this investigation is to help establish: whether or not strong relationships between suppliers and customers improve performance; and if prescriptive frameworks on outsourcing radical innovations are dependent on industry clockspeed. Design/methodology/approach – A survey of UK-based manufacturers, followed by a statistical analysis. Findings – Long-term supplier links seem not to play a role in the development of radical innovations. Moreover, industry clockspeed has no significant bearing on the success or failure of any outsourcing strategy for radically new technologies. Research limitations/implications – Literature about outsourcing in the face of radical innovation can be more confidently applied to industries of all clockspeeds. Practical implications – Prescriptions for fast clockspeed industries should be applied more broadly: all industries should maintain a high degree of vertical integration in the early days of a radical innovation. Originality/value – Prior papers had explored whether or not a company should outsource radical innovations, but none had determined if this is equally true for slow industries and fast ones. Therein lies the original contribution of this paper.
Resumo:
Purpose – To determine whether or not clockspeed is an important variable in outsourcing strategies throughout the development of radical innovations. Design/methodology/approach – An internet-based survey of manufacturing firms from all over the world. Findings – An industry's clockspeed does not play a significant role in the success or failure of a particular outsourcing strategy for a radical innovation. Research limitations/implications – Conclusions from earlier research in this area are not necessarily industry-specific. Practical implications – Lessons learned via previous investigations about the computer industry need not be confined to that sector. Vertical integration may be a more robust outsourcing strategy when developing a radical innovation in industries of all clockspeeds. Originality/value – Previous research efforts in this field focused on a single technology jump, but this approach may have overlooked a potentially important variable: industry clockspeed. Thus, this investigation explores whether clockspeed is an important factor.
Resumo:
Cold-formed steel stud walls are a major component of Light Steel Framing (LSF) building systems used in commercial, industrial and residential buildings. In the conventional LSF stud wall systems, thin steel studs are protected from fire by placing one or two layers of plasterboard on both sides with or without cavity insulation. However, there is very limited data about the structural and thermal performance of stud wall systems while past research showed contradicting results, for example, about the benefits of cavity insulation. This research was therefore conducted to improve the knowledge and understanding of the structural and thermal performance of cold-formed steel stud wall systems (both load bearing and non-load bearing) under fire conditions and to develop new improved stud wall systems including reliable and simple methods to predict their fire resistance rating. Full scale fire tests of cold-formed steel stud wall systems formed the basis of this research. This research proposed an innovative LSF stud wall system in which a composite panel made of two plasterboards with insulation between them was used to improve the fire rating. Hence fire tests included both conventional steel stud walls with and without the use of cavity insulation and the new composite panel system. A propane fired gas furnace was specially designed and constructed first. The furnace was designed to deliver heat in accordance with the standard time temperature curve as proposed by AS 1530.4 (SA, 2005). A compression loading frame capable of loading the individual studs of a full scale steel stud wall system was also designed and built for the load-bearing tests. Fire tests included comprehensive time-temperature measurements across the thickness and along the length of all the specimens using K type thermocouples. They also included the measurements of load-deformation characteristics of stud walls until failure. The first phase of fire tests included 15 small scale fire tests of gypsum plasterboards, and composite panels using different types of insulating material of varying thickness and density. Fire performance of single and multiple layers of gypsum plasterboards was assessed including the effect of interfaces between adjacent plasterboards on the thermal performance. Effects of insulations such as glass fibre, rock fibre and cellulose fibre were also determined while the tests provided important data relating to the temperature at which the fall off of external plasterboards occurred. In the second phase, nine small scale non-load bearing wall specimens were tested to investigate the thermal performance of conventional and innovative steel stud wall systems. Effects of single and multiple layers of plasterboards with and without vertical joints were investigated. The new composite panels were seen to offer greater thermal protection to the studs in comparison to the conventional panels. In the third phase of fire tests, nine full scale load bearing wall specimens were tested to study the thermal and structural performance of the load bearing wall assemblies. A full scale test was also conducted at ambient temperature. These tests showed that the use of cavity insulation led to inferior fire performance of walls, and provided good explanations and supporting research data to overcome the incorrect industry assumptions about cavity insulation. They demonstrated that the use of insulation externally in a composite panel enhanced the thermal and structural performance of stud walls and increased their fire resistance rating significantly. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. This research also included steady state tensile tests at ambient and elevated temperatures to address the lack of reliable mechanical properties for high grade cold-formed steels at elevated temperatures. Suitable predictive equations were developed for calculating the yield strength and elastic modulus at elevated temperatures. In summary, this research has developed comprehensive experimental thermal and structural performance data for both the conventional and the proposed non-load bearing and load bearing stud wall systems under fire conditions. Idealized hot flange temperature profiles have been developed for non-insulated, cavity insulated and externally insulated load bearing wall models along with suitable equations for predicting their failure times. A graphical method has also been proposed to predict the failure times (fire rating) of non-load bearing and load bearing walls under different load ratios. The results from this research are useful to both fire researchers and engineers working in this field. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF walls under fire conditions, and developed an innovative LSF wall system with increased fire rating. It has clearly demonstrated the detrimental effects of using cavity insulation, and has paved the way for Australian building industries to develop new wall panels with increased fire rating for commercial applications worldwide.
Resumo:
This paper describes the vulnerability of masonry under shear; first the mechanisms of in-plane and out-of-plane shear performance of masonry are reviewed; both the unreinforced and lightly reinforced masonry wall systems are considered. Factors affecting the response of unreinforced and reinforced masonry to shear are described and the effect of the variability of those factors to the failure mode of masonry shear walls is also discussed. Some critique is provided on the existing design provisions in various masonry standards.
Resumo:
Magnesium alloys have been of growing interest to various engineering applications, such as the automobile, aerospace, communication and computer industries due to their low density, high specific strength, good machineability and availability as compared with other structural materials. However, most Mg alloys suffer from poor plasticity due to their Hexagonal Close Packed structure. Grain refinement has been proved to be an effective method to enhance the strength and alter the ductility of the materials. Several methods have been proposed to produce materials with nanocrystalline grain structures. So far, most of the research work on nanocrystalline materials has been carried out on Face-Centered Cubic and Body-Centered Cubic metals. However, there has been little investigation of nanocrystalline Mg alloys. In this study, bulk coarse-grained and nanocrystalline Mg alloys were fabricated by a mechanical alloying method. The mixed powder of Mg chips and Al powder was mechanically milled under argon atmosphere for different durations of 0 hours (MA0), 10 hours (MA10), 20 hours (MA20), 30 hours (MA30) and 40 hours (MA40), followed by compaction and sintering. Then the sintered billets were hot-extruded into metallic rods with a 7 mm diameter. The obtained Mg alloys have a nominal composition of Mg–5wt% Al, with grain sizes ranging from 13 μm down to 50 nm, depending on the milling durations. The microstructure characterization and evolution after deformation were carried out by means of Optical microscopy, X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Probe Microscopy and Neutron Diffraction techniques. Nanoindentaion, compression and micro-compression tests on micro-pillars were used to study the size effects on the mechanical behaviour of the Mg alloys. Two kinds of size effects on the mechanical behaviours and deformation mechanisms were investigated: grain size effect and sample size effect. The nanoindentation tests were composed of constant strain rate, constant loading rate and indentation creep tests. The normally reported indentation size effect in single crystal and coarse-grained crystals was observed in both the coarse-grained and nanocrystalline Mg alloys. Since the indentation size effect is correlated to the Geometrically Necessary Dislocations under the indenter to accommodate the plastic deformation, the good agreement between the experimental results and the Indentation Size Effect model indicated that, in the current nanocrystalline MA20 and MA30, the dislocation plasticity was still the dominant deformation mechanism. Significant hardness enhancement with decreasing grain size, down to 58 nm, was found in the nanocrystalline Mg alloys. Further reduction of grain size would lead to a drop in the hardness values. The failure of grain refinement strengthening with the relatively high strain rate sensitivity of nanocrystalline Mg alloys suggested a change in the deformation mechanism. Indentation creep tests showed that the stress exponent was dependent on the loading rate during the loading section of the indentation, which was related to the dislocation structures before the creep starts. The influence of grain size on the mechanical behaviour and strength of extruded coarse-grained and nanocrystalline Mg alloys were investigated using uniaxial compression tests. The macroscopic response of the Mg alloys transited from strain hardening to strain softening behaviour, with grain size reduced from 13 ìm to 50 nm. The strain hardening was related to the twinning induced hardening and dislocation hardening effect, while the strain softening was attributed to the localized deformation in the nanocrystalline grains. The tension–compression yield asymmetry was noticed in the nanocrystalline region, demonstrating the twinning effect in the ultra-fine-grained and nanocrystalline region. The relationship k tensions < k compression failed in the nanocrystalline Mg alloys; this was attributed to the twofold effect of grain size on twinning. The nanocrystalline Mg alloys were found to exhibit increased strain rate sensitivity with decreasing grain size, with strain rate ranging from 0.0001/s to 0.01/s. Strain rate sensitivity of coarse-grained MA0 was increased by more than 10 times in MA40. The Hall-Petch relationship broke down at a critical grain size in the nanocrystalline region. The breakdown of the Hall-Petch relationship and the increased strain rate sensitivity were due to the localized dislocation activities (generalization and annihilation at grain boundaries) and the more significant contribution from grain boundary mediated mechanisms. In the micro-compression tests, the sample size effects on the mechanical behaviours were studied on MA0, MA20 and MA40 micro-pillars. In contrast to the bulk samples under compression, the stress-strain curves of MA0 and MA20 micro-pillars were characterized with a number of discrete strain burst events separated by nearly elastic strain segments. Unlike MA0 and MA20, the stress-strain curves of MA40 micro-pillars were smooth, without obvious strain bursts. The deformation mechanisms of the MA0 and MA20 micro-pillars under micro-compression tests were considered to be initially dominated by deformation twinning, followed by dislocation mechanisms. For MA40 pillars, the deformation mechanisms were believed to be localized dislocation activities and grain boundary related mechanisms. The strain hardening behaviours of the micro-pillars suggested that the grain boundaries in the nanocrystalline micro-pillars would reduce the source (nucleation sources for twins/dislocations) starvation hardening effect. The power law relationship of the yield strength on pillar dimensions in MA0, MA20 supported the fact that the twinning mechanism was correlated to the pre-existing defects, which can promote the nucleation of the twins. Then, we provided a latitudinal comparison of the results and conclusions derived from the different techniques used for testing the coarse-grained and nanocrystalline Mg alloy; this helps to better understand the deformation mechanisms of the Mg alloys as a whole. At the end, we summarized the thesis and highlighted the conclusions, contributions, innovations and outcomes of the research. Finally, it outlined recommendations for future work.
Resumo:
Eccentric exercise is the conservative treatment of choice for mid-portion Achilles tendinopathy. While there is a growing body of evidence supporting the medium to long term efficacy of eccentric exercise in Achilles tendinopathy treatment, very few studies have investigated the short term response of the tendon to eccentric exercise. Moreover, the mechanisms through which tendinopathy symptom resolution occurs remain to be established. The primary purpose of this thesis was to investigate the acute adaptations of the Achilles tendon to, and the biomechanical characteristics of, the eccentric exercise protocol used for Achilles tendinopathy rehabilitation and a concentric equivalent. The research was conducted with an orientation towards exploring potential mechanisms through which eccentric exercise may bring about a resolution of tendinopathy symptoms. Specifically, the morphology of tendinopathic and normal Achilles tendons was monitored using high resolution sonography prior to and following eccentric and concentric exercise, to facilitate comparison between the treatment of choice and a similar alternative. To date, the only proposed mechanism through which eccentric exercise is thought to result in symptom resolution is the increased variability in motor output force observed during eccentric exercise. This thesis expanded upon prior work by investigating the variability in motor output force recorded during eccentric and concentric exercises, when performed at two different knee joint angles, by limbs with and without symptomatic tendinopathy. The methodological phase of the research focused on establishing the reliability of measures of tendon thickness, tendon echogenicity, electromyography (EMG) of the Triceps Surae and the standard deviation (SD) and power spectral density (PSD) of the vertical ground reaction force (VGRF). These analyses facilitated comparison between the error in the measurements and experimental differences identified as statistically significant, so that the importance and meaning of the experimental differences could be established. One potential limitation of monitoring the morphological response of the Achilles tendon to exercise loading is that the Achilles tendon is continually exposed to additional loading as participants complete the walking required to carry out their necessary daily tasks. The specific purpose of the last experiment in the methodological phase was to evaluate the effect of incidental walking activity on Achilles tendon morphology. The results of this study indicated that walking activity could decrease Achilles tendon thickness (negative diametral strain) and that the decrease in thickness was dependent on both the amount of walking completed and the proximity of walking activity to the sonographic examination. Thus, incidental walking activity was identified as a potentially confounding factor for future experiments which endeavoured to monitor changes in tendon thickness with exercise loading. In the experimental phase of this thesis the thickness of Achilles tendons was monitored prior to and following isolated eccentric and concentric exercise. The initial pilot study demonstrated that eccentric exercise resulted in a greater acute decrease in Achilles tendon thickness (greater diametral strain) compared to an equivalent concentric exercise, in participants with no history of Achilles tendon pain. This experiment was then expanded to incorporate participants with unilateral Achilles tendinopathy. The major finding of this experiment was that the acute decrease in Achilles tendon thickness observed following eccentric exercise was modified by the presence of tendinopathy, with a smaller decrease (less diametral strain) noted for tendinopathic compared to healthy control tendon. Based on in vitro evidence a decrease in tendon thickness is believed to reflect extrusion of fluid from the tendon with loading. This process would appear to be limited by the presence of pathology and is hypothesised to be a result of the changes in tendon structure associated with tendinopathy. Load induced fluid movement may be important to the maintenance of tendon homeostasis and structure as it has the potential to enhance molecular movement and stimulate tendon remodelling. On this basis eccentric exercise may be more beneficial to the tendon than concentric exercise. Finally, EMG and motor output force variability (SD and PSD of VGRF) were investigated while participants with and without tendinopathy performed the eccentric and concentric exercises. Although between condition differences were identified as statistically significant for a number of force variability parameters, the differences were not greater than the limits of agreement for repeated measures. Consequently the meaning and importance of these findings were questioned. Interestingly, the EMG amplitude of all three Triceps Surae muscles did not vary with knee joint angle during the performance of eccentric exercise. This raises questions pertaining to the functional importance of performing the eccentric exercise protocol at each of the two knee joint angles as it is currently prescribed. EMG amplitude was significantly greater during concentric compared to eccentric muscle actions. Differences in the muscle activation patterns may result in different stress distributions within the tendon and be related to the different diametral strain responses observed for eccentric and concentric muscle actions.
Resumo:
Alcohol misuse and violence is a major public safety concern. Although the extent and nature of alcohol-related violence has been examined there is a paucity of research surrounding the ongoing construction and re-construction of gender identity and its relationship to aggression and alcohol consumption. A social constructionist perspective was used to explore women’s perceptions and experiences of drinking alcohol and incidents of public violence and aggression. Two methods were used. Firstly, an exploratory study consisting of three in-depth interviews and three focus groups to examine the ideas women constructed in relation to their experiences; and further, an online survey to explore self-reported drinking patterns among men and women. The main themes emerging from the qualitative material were ‘planned drinking to excess’ (incorporating the rituals of a ‘pre-drink’ routine), and perceptions of appropriate feminine behaviour (particularly in relation to excessive drinking and alcohol related aggression in and around licensed venues). The survey data indicated that men continue to consume more alcohol and at higher levels than women, while women’s involvement in aggressive incidents on a night out being similar to that of men. Both genders considered that women’s involvement in aggressive incidents in and around licensed venues as ‘unfeminine’. Understanding drinking as a socially constructed activity adds to our understanding of the meaning of drinking for women, and in particular, young women. This perspective may allow more focussed initiatives to address the social and health related harms associated with drinking in and around licensed venues.