931 resultados para Thoracic Injuries


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Queensland Coal Industry Employees Health Scheme was implemented in 1993 to provide health surveillance for all Queensland coal industry workers. Tt1e government, mining employers and mining unions agreed that the scheme should operate for seven years. At the expiry of the scheme, an assessment of the contribution of health surveillance to meet coal industry needs would be an essential part of determining a future health surveillance program. This research project has analysed the data made available between 1993 and 1998. All current coal industry employees have had at least one health assessment. The project examined how the centralised nature of the Health Scheme benefits industry by identi~)jng key health issues and exploring their dimensions on a scale not possible by corporate based health surveillance programs. There is a body of evidence that indicates that health awareness - on the scale of the individual, the work group and the industry is not a part of the mining industry culture. There is also growing evidence that there is a need for this culture to change and that some change is in progress. One element of this changing culture is a growth in the interest by the individual and the community in information on health status and benchmarks that are reasonably attainable. This interest opens the way for health education which contains personal, community and occupational elements. An important element of such education is the data on mine site health status. This project examined the role of health surveillance in the coal mining industry as a tool for generating the necessary information to promote an interest in health awareness. The Health Scheme Database provides the material for the bulk of the analysis of this project. After a preliminary scan of the data set, more detailed analysis was undertaken on key health and related safety issues that include respiratory disorders, hearing loss and high blood pressure. The data set facilitates control for confounding factors such as age and smoking status. Mines can be benchmarked to identify those mines with effective health management and those with particular challenges. While the study has confirmed the very low prevalence of restrictive airway disease such as pneu"moconiosis, it has demonstrated a need to examine in detail the emergence of obstructive airway disease such as bronchitis and emphysema which may be a consequence of the increasing use of high dust longwall technology. The power of the Health Database's electronic data management is demonstrated by linking the health data to other data sets such as injury data that is collected by the Department of l\1mes and Energy. The analysis examines serious strain -sprain injuries and has identified a marked difference between the underground and open cut sectors of the industry. The analysis also considers productivity and OHS data to examine the extent to which there is correlation between any pairs ofJpese and previously analysed health parameters. This project has demonstrated that the current structure of the Coal Industry Employees Health Scheme has largely delivered to mines and effective health screening process. At the same time, the centralised nature of data collection and analysis has provided to the mines, the unions and the government substantial statistical cross-sectional data upon which strategies to more effectively manage health and relates safety issues can be based.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Wandering represents a major problem in the management of patients with Alzheimer’s disease (AD). In this study we examined the utility of the Algase Wandering Scale (AWS), a newly developed psychometric instrument that asks caregivers to assess the likelihood of wandering behavior. Methods The AWS was administered to the caregivers of 40 AD patients and total and subscale scores were examined in relation to measures of mental and functional status, depressive symptoms and medication usage. Results AWS scores were comparable, though slightly lower, than those normative values previously published. Higher scores were associated with more severe dementia. The Negative Outcome subscale showed a significant increase in reported falls or injuries in association with anti-depressant use. Conclusions These data provide some construct validation for the AWS as a potentially useful scale to assess wandering behaviors in AD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regional safety program managers face a daunting challenge in the attempt to reduce deaths, injuries, and economic losses that result from motor vehicle crashes. This difficult mission is complicated by the combination of a large perceived need, small budget, and uncertainty about how effective each proposed countermeasure would be if implemented. A manager can turn to the research record for insight, but the measured effect of a single countermeasure often varies widely from study to study and across jurisdictions. The challenge of converting widespread and conflicting research results into a regionally meaningful conclusion can be addressed by incorporating "subjective" information into a Bayesian analysis framework. Engineering evaluations of crashes provide the subjective input on countermeasure effectiveness in the proposed Bayesian analysis framework. Empirical Bayes approaches are widely used in before-and-after studies and "hot-spot" identification; however, in these cases, the prior information was typically obtained from the data (empirically), not subjective sources. The power and advantages of Bayesian methods for assessing countermeasure effectiveness are presented. Also, an engineering evaluation approach developed at the Georgia Institute of Technology is described. Results are presented from an experiment conducted to assess the repeatability and objectivity of subjective engineering evaluations. In particular, the focus is on the importance, methodology, and feasibility of the subjective engineering evaluation for assessing countermeasures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Persistent use of safety restraints prevents deaths and reduces the severity and number of injuries resulting from motor vehicle crashes. However, safety-restraint use rates in the United States have been below those of other nations with safety-restraint enforcement laws. With a better understanding of the relationship between safety-restraint law enforcement and safety-restraint use, programs can be implemented to decrease the number of deaths and injuries resulting from motor vehicle crashes. Does safety-restraint use increase as enforcement increases? Do motorists increase their safety-restraint use in response to the general presence of law enforcement or to targeted law enforcement efforts? Does a relationship between enforcement and restraint use exist at the countywide level? A logistic regression model was estimated by using county-level safety-restraint use data and traffic citation statistics collected in 13 counties within the state of Florida in 1997. The model results suggest that safety-restraint use is positively correlated with enforcement intensity, is negatively correlated with safety-restraint enforcement coverage (in lanemiles of enforcement coverage), and is greater in urban than rural areas. The quantification of these relationships may assist Florida and other law enforcement agencies in raising safety-restraint use rates by allocating limited funds more efficiently either by allocating additional time for enforcement activities of the existing force or by increasing enforcement staff. In addition, the research supports a commonsense notion that enforcement activities do result in behavioral response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The treatment of challenging fractures and large osseous defects presents a formidable problem for orthopaedic surgeons. Tissue engineering/regenerative medicine approaches seek to solve this problem by delivering osteogenic signals within scaffolding biomaterials. In this study, we introduce a hybrid growth factor delivery system that consists of an electrospun nanofiber mesh tube for guiding bone regeneration combined with peptide-modified alginate hydrogel injected inside the tube for sustained growth factor release. We tested the ability of this system to deliver recombinant bone morphogenetic protein-2 (rhBMP-2) for the repair of critically-sized segmental bone defects in a rat model. Longitudinal [mu]-CT analysis and torsional testing provided quantitative assessment of bone regeneration. Our results indicate that the hybrid delivery system resulted in consistent bony bridging of the challenging bone defects. However, in the absence of rhBMP-2, the use of nanofiber mesh tube and alginate did not result in substantial bone formation. Perforations in the nanofiber mesh accelerated the rhBMP-2 mediated bone repair, and resulted in functional restoration of the regenerated bone. [mu]-CT based angiography indicated that perforations did not significantly affect the revascularization of defects, suggesting that some other interaction with the tissue surrounding the defect such as improved infiltration of osteoprogenitor cells contributed to the observed differences in repair. Overall, our results indicate that the hybrid alginate/nanofiber mesh system is a promising growth factor delivery strategy for the repair of challenging bone injuries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Floods are the most common hazard to cause disasters and have led to extensive morbidity and mortality throughout the world. The impact of floods on the human community is related directly to the location and topography of the area, as well as human demographics and characteristics of the built environment. Objectives: The aim of this study is to identify the health impacts of disasters and the underlying causes of health impacts associated with floods. A conceptual framework is developed that may assist with the development of a rational and comprehensive approach to prevention, mitigation, and management. Methods: This study involved an extensive literature review that located >500 references, which were analyzed to identify common themes, findings, and expert views. The findings then were distilled into common themes. Results: The health impacts of floods are wide ranging, and depend on a number of factors. However, the health impacts of a particular flood are specific to the particular context. The immediate health impacts of floods include drowning, injuries, hypothermia, and animal bites. Health risks also are associated with the evacuation of patients, loss of health workers, and loss of health infrastructure including essential drugs and supplies. In the mediumterm, infected wounds, complications of injury, poisoning, poor mental health, communicable diseases, and starvation are indirect effects of flooding. In the long-term, chronic disease, disability, poor mental health, and poverty-related diseases including malnutrition are the potential legacy. Conclusions: This article proposes a structured approach to the classification of the health impacts of floods and a conceptual framework that demonstrates the relationships between floods and the direct and indirect health consequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predicting safety on roadways is standard practice for road safety professionals and has a corresponding extensive literature. The majority of safety prediction models are estimated using roadway segment and intersection (microscale) data, while more recently efforts have been undertaken to predict safety at the planning level (macroscale). Safety prediction models typically include roadway, operations, and exposure variables—factors known to affect safety in fundamental ways. Environmental variables, in particular variables attempting to capture the effect of rain on road safety, are difficult to obtain and have rarely been considered. In the few cases weather variables have been included, historical averages rather than actual weather conditions during which crashes are observed have been used. Without the inclusion of weather related variables researchers have had difficulty explaining regional differences in the safety performance of various entities (e.g. intersections, road segments, highways, etc.) As part of the NCHRP 8-44 research effort, researchers developed PLANSAFE, or planning level safety prediction models. These models make use of socio-economic, demographic, and roadway variables for predicting planning level safety. Accounting for regional differences - similar to the experience for microscale safety models - has been problematic during the development of planning level safety prediction models. More specifically, without weather related variables there is an insufficient set of variables for explaining safety differences across regions and states. Furthermore, omitted variable bias resulting from excluding these important variables may adversely impact the coefficients of included variables, thus contributing to difficulty in model interpretation and accuracy. This paper summarizes the results of an effort to include weather related variables, particularly various measures of rainfall, into accident frequency prediction and the prediction of the frequency of fatal and/or injury degree of severity crash models. The purpose of the study was to determine whether these variables do in fact improve overall goodness of fit of the models, whether these variables may explain some or all of observed regional differences, and identifying the estimated effects of rainfall on safety. The models are based on Traffic Analysis Zone level datasets from Michigan, and Pima and Maricopa Counties in Arizona. Numerous rain-related variables were found to be statistically significant, selected rain related variables improved the overall goodness of fit, and inclusion of these variables reduced the portion of the model explained by the constant in the base models without weather variables. Rain tends to diminish safety, as expected, in fairly complex ways, depending on rain frequency and intensity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At least two important transportation planning activities rely on planning-level crash prediction models. One is motivated by the Transportation Equity Act for the 21st Century, which requires departments of transportation and metropolitan planning organizations to consider safety explicitly in the transportation planning process. The second could arise from a need for state agencies to establish incentive programs to reduce injuries and save lives. Both applications require a forecast of safety for a future period. Planning-level crash prediction models for the Tucson, Arizona, metropolitan region are presented to demonstrate the feasibility of such models. Data were separated into fatal, injury, and property-damage crashes. To accommodate overdispersion in the data, negative binomial regression models were applied. To accommodate the simultaneity of fatality and injury crash outcomes, simultaneous estimation of the models was conducted. All models produce crash forecasts at the traffic analysis zone level. Statistically significant (p-values < 0.05) and theoretically meaningful variables for the fatal crash model included population density, persons 17 years old or younger as a percentage of the total population, and intersection density. Significant variables for the injury and property-damage crash models were population density, number of employees, intersections density, percentage of miles of principal arterial, percentage of miles of minor arterials, and percentage of miles of urban collectors. Among several conclusions it is suggested that planning-level safety models are feasible and may play a role in future planning activities. However, caution must be exercised with such models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large trucks are involved in a disproportionately small fraction of the total crashes but a disproportionately large fraction of fatal crashes. Large truck crashes often result in significant congestion due to their large physical dimensions and from difficulties in clearing crash scenes. Consequently, preventing large truck crashes is critical to improving highway safety and operations. This study identifies high risk sites (hot spots) for large truck crashes in Arizona and examines potential risk factors related to the design and operation of the high risk sites. High risk sites were identified using both state of the practice methods (accident reduction potential using negative binomial regression with long crash histories) and a newly proposed method using Property Damage Only Equivalents (PDOE). The hot spots identified via the count model generally exhibited low fatalities and major injuries but large minor injuries and PDOs, while the opposite trend was observed using the PDOE methodology. The hot spots based on the count model exhibited large AADTs, whereas those based on the PDOE showed relatively small AADTs but large fractions of trucks and high posted speed limits. Documented site investigations of hot spots revealed numerous potential risk factors, including weaving activities near freeway junctions and ramps, absence of acceleration lanes near on-ramps, small shoulders to accommodate large trucks, narrow lane widths, inadequate signage, and poor lighting conditions within a tunnel.