966 resultados para Stochastic Ordinary Differential Equations
Resumo:
En una memoria anterior sobre la aplicación de los funcionales abeloides a la resolución de las ecuaciones en derivadas parciales de cuarto orden con coeficientes constantes (1), se hizo la clasificación de las ecuaciones cuyo cono característico posee una generatriz tacnodal. Entre las ecuaciones de tipo totalmente hiperbólico se destacaron dos casos: según que el cono característico correspondiente sea de género O (primer caso), o bien sea de género 1 (segundo caso). En la citada memoria se estudia dicho primer caso, mientras que en ésta trataremos del segundo: con más precisión, se tratará de resolver las ecuaciones en derivadas parciales del tipo indicado cuyo cono característico además de ser de género 1, sea simétrico respecto al plano tangente al cono a lo largo de la generatriz tacnodal. El desarrollo de los cálculos es aquí muy penoso pero se puede evitar mediante consideraciones sintéticas sobre los resultados obtenidos en la menloria anteriormente citada.
Resumo:
[cat] En l'article es dona una condició necessària per a que els conjunts de negociació definits per Shimomura (1997) i el nucli d'un joc cooperatiu amb utilitat transferible coincideixin. A tal efecte, s'introdueix el concepte de vectors de màxim pagament. La condició necessària consiteix a verificar que aquests vectors pertanyen al nucli del joc.
Resumo:
[spa] En un modelo de Poisson compuesto, definimos una estrategia de reaseguro proporcional de umbral : se aplica un nivel de retención k1 siempre que las reservas sean inferiores a un determinado umbral b, y un nivel de retención k2 en caso contrario. Obtenemos la ecuación íntegro-diferencial para la función Gerber-Shiu, definida en Gerber-Shiu -1998- en este modelo, que nos permite obtener las expresiones de la probabilidad de ruina y de la transformada de Laplace del momento de ruina para distintas distribuciones de la cuantía individual de los siniestros. Finalmente presentamos algunos resultados numéricos.
Resumo:
En este trabajo introducimos diversas clases de barreras del dividendo en la teoría modelo clásica de la ruina. Estudiamos la influencia de la estrategia de la barrera en probabilidad de la ruina. Un método basado en las ecuaciones de la renovación [Grandell (1991)], alternativa a la discusión diferenciada [Gerber (1975)], utilizado para conseguir las ecuaciones diferenciales parciales para resolver probabilidades de la supervivencia. Finalmente calculamos y comparamos las probabilidades de la supervivencia usando la barrera linear y parabólica del dividendo, con la ayuda de la simulación
Resumo:
We study the effects of external noise in a one-dimensional model of front propagation. Noise is introduced through the fluctuations of a control parameter leading to a multiplicative stochastic partial differential equation. Analytical and numerical results for the front shape and velocity are presented. The linear-marginal-stability theory is found to increase its range of validity in the presence of external noise. As a consequence noise can stabilize fronts not allowed by the deterministic equation.
Resumo:
The RuskSkinner formalism was developed in order to give a geometrical unified formalism for describing mechanical systems. It incorporates all the characteristics of Lagrangian and Hamiltonian descriptions of these systems (including dynamical equations and solutions, constraints, Legendre map, evolution operators, equivalence, etc.). In this work we extend this unified framework to first-order classical field theories, and show how this description comprises the main features of the Lagrangian and Hamiltonian formalisms, both for the regular and singular cases. This formulation is a first step toward further applications in optimal control theory for partial differential equations. 2004 American Institute of Physics.
Resumo:
A Hamiltonian formalism is set up for nonlocal Lagrangian systems. The method is based on obtaining an equivalent singular first order Lagrangian, which is processed according to the standard Legendre transformation and then, the resulting Hamiltonian formalism is pulled back onto the phase space defined by the corresponding constraints. Finally, the standard results for local Lagrangians of any order are obtained as a particular case.
Resumo:
We evaluate the performance of different optimization techniques developed in the context of optical flow computation with different variational models. In particular, based on truncated Newton methods (TN) that have been an effective approach for large-scale unconstrained optimization, we de- velop the use of efficient multilevel schemes for computing the optical flow. More precisely, we evaluate the performance of a standard unidirectional mul- tilevel algorithm - called multiresolution optimization (MR/OPT), to a bidrec- tional multilevel algorithm - called full multigrid optimization (FMG/OPT). The FMG/OPT algorithm treats the coarse grid correction as an optimiza- tion search direction and eventually scales it using a line search. Experimental results on different image sequences using four models of optical flow com- putation show that the FMG/OPT algorithm outperforms both the TN and MR/OPT algorithms in terms of the computational work and the quality of the optical flow estimation.
Resumo:
We face the problem of characterizing the periodic cases in parametric families of (real or complex) rational diffeomorphisms having a fixed point. Our approach relies on the Normal Form Theory, to obtain necessary conditions for the existence of a formal linearization of the map, and on the introduction of a suitable rational parametrization of the parameters of the family. Using these tools we can find a finite set of values p for which the map can be p-periodic, reducing the problem of finding the parameters for which the periodic cases appear to simple computations. We apply our results to several two and three dimensional classes of polynomial or rational maps. In particular we find the global periodic cases for several Lyness type recurrences
Resumo:
This paper studies non-autonomous Lyness type recurrences of the form x_{n+2}=(a_n+x_n)/x_{n+1}, where a_n is a k-periodic sequence of positive numbers with prime period k. We show that for the cases k in {1,2,3,6} the behavior of the sequence x_n is simple(integrable) while for the remaining cases satisfying k not a multiple of 5 this behavior can be much more complicated(chaotic). The cases k multiple of 5 are studied separately.
Resumo:
This paper studies non-autonomous Lyness type recurrences of the form xn+2 = (an+xn+1)=xn, where fang is a k-periodic sequence of positive numbers with primitive period k. We show that for the cases k 2 f1; 2; 3; 6g the behavior of the sequence fxng is simple (integrable) while for the remaining cases satisfying this behavior can be much more complicated (chaotic). We also show that the cases where k is a multiple of 5 present some di erent features.
Resumo:
We present a novel numerical algorithm for the simulation of seismic wave propagation in porous media, which is particularly suitable for the accurate modelling of surface wave-type phenomena. The differential equations of motion are based on Biot's theory of poro-elasticity and solved with a pseudospectral approach using Fourier and Chebyshev methods to compute the spatial derivatives along the horizontal and vertical directions, respectively. The time solver is a splitting algorithm that accounts for the stiffness of the differential equations. Due to the Chebyshev operator the grid spacing in the vertical direction is non-uniform and characterized by a denser spatial sampling in the vicinity of interfaces, which allows for a numerically stable and accurate evaluation of higher order surface wave modes. We stretch the grid in the vertical direction to increase the minimum grid spacing and reduce the computational cost. The free-surface boundary conditions are implemented with a characteristics approach, where the characteristic variables are evaluated at zero viscosity. The same procedure is used to model seismic wave propagation at the interface between a fluid and porous medium. In this case, each medium is represented by a different grid and the two grids are combined through a domain-decomposition method. This wavefield decomposition method accounts for the discontinuity of variables and is crucial for an accurate interface treatment. We simulate seismic wave propagation with open-pore and sealed-pore boundary conditions and verify the validity and accuracy of the algorithm by comparing the numerical simulations to analytical solutions based on zero viscosity obtained with the Cagniard-de Hoop method. Finally, we illustrate the suitability of our algorithm for more complex models of porous media involving viscous pore fluids and strongly heterogeneous distributions of the elastic and hydraulic material properties.
Resumo:
A human in vivo toxicokinetic model was built to allow a better understanding of the toxicokinetics of folpet fungicide and its key ring biomarkers of exposure: phthalimide (PI), phthalamic acid (PAA) and phthalic acid (PA). Both PI and the sum of ring metabolites, expressed as PA equivalents (PAeq), may be used as biomarkers of exposure. The conceptual representation of the model was based on the analysis of the time course of these biomarkers in volunteers orally and dermally exposed to folpet. In the model, compartments were also used to represent the body burden of folpet and experimentally relevant PI, PAA and PA ring metabolites in blood and in key tissues as well as in excreta, hence urinary and feces. The time evolution of these biomarkers in each compartment of the model was then mathematically described by a system of coupled differential equations. The mathematical parameters of the model were then determined from best fits to the time courses of PI and PAeq in blood and urine of five volunteers administered orally 1 mg kg(-1) and dermally 10 mg kg(-1) of folpet. In the case of oral administration, the mean elimination half-life of PI from blood (through feces, urine or metabolism) was found to be 39.9 h as compared with 28.0 h for PAeq. In the case of a dermal application, mean elimination half-life of PI and PAeq was estimated to be 34.3 and 29.3 h, respectively. The average final fractions of administered dose recovered in urine as PI over the 0-96 h period were 0.030 and 0.002%, for oral and dermal exposure, respectively. Corresponding values for PAeq were 24.5 and 1.83%, respectively. Finally, the average clearance rate of PI from blood calculated from the oral and dermal data was 0.09 ± 0.03 and 0.13 ± 0.05 ml h(-1) while the volume of distribution was 4.30 ± 1.12 and 6.05 ± 2.22 l, respectively. It was not possible to obtain the corresponding values from PAeq data owing to the lack of blood time course data.
Resumo:
Solutions of the general cubic complex Ginzburg-Landau equation comprising multiple spiral waves are considered, and laws of motion for the centers are derived. The direction of the motion changes from along the line of centers to perpendicular to the line of centers as the separation increases, with the strength of the interaction algebraic at small separations and exponentially small at large separations. The corresponding asymptotic wave number and frequency are also determined, which evolve slowly as the spirals move