1000 resultados para SEMICONDUCTOR INTERFACES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spin interaction and the effective g factor of a magnetic exciton (ME) are investigated theoretically in a diluted magnetic semiconductor (DMS) quantum dot (QD), including the Coulomb interaction and the sp-d exchange interaction. At low magnetic field, the ME energy decreases rapidly with increasing magnetic field and saturates at high magnetic field for high Mn concentration. The ground state of the ME exhibits an interesting crossing behavior between sigma(+)-ME and sigma(-)-ME for low Mn concentration. The g(ex) factor of the ME in a DMS QD displays a monotonic decrease with increasing magnetic field and can be tuned to zero by an external magnetic field. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A metal-semiconductor-metal (MSM) ultraviolet photodetector has been fabricated using unintentionally doped n-GaN films grown on sapphire substrates. Its dark current, photocurrent under the illumination with lambda = 360 nm light, responsivity, and the dependence of responsivity on bias voltage were measured at room temperature. The dark current of the photodetector is 1.03 nA under 5 V bias, and is 15.3 nA under 10 V bias. A maximum responsivity of 0.166 A/W has been achieved under the illumination with lambda = 366 nm light and 15 V bias. It exhibits a typical sharp band-edge cutoff at the wavelength of 366 nm, and a high responsivity at the wavelength from 320 nm to 366 nm. Its responsivity under the illumination with lambda = 360 nm light increases when the bias voltage increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferromagnetic semiconductor MnxGa1-xSb single crystals were fabricated by Mn-ions implantation, deposition, and the post annealing. Magnetic hysteresis-loops in the MnxGa1-xSb single crystals were obtained at room temperature (300 K). The structure of the ferromagnetic semiconductor MnxGa1-xSb single crystal was analyzed by Xray diffraction. The distribution of carrier concentrations in MnxGa1-xSb was investigated by electrochemical capacitance-voltage profiler. The content of Mn in MnxGa1-xSb varied gradually from x = 0.09 near the surface to x = 0 in the wafer inner analyzed by X-ray diffraction. Electrochemical capacitance-voltage profiler reveals that the concentration of p-type carriers in MnxGa1-xSb is as high as 1 X 10(21) cm(-3), indicating that most of the Mn atoms in MnxGa1-xSb take the site of Ga, and play a role of acceptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel semiconductor optical amplifier (SOA) optical gate with a graded strained bulk-like active structure is proposed. A fiber-to-fiber gain of 10 dB when the coupling loss reaches 7 dB/factet and a polarization insensitivity of less than 0.9 dB for multiwavelength and different power input signals over the whole operation current are obtained. Moreover, for our SOA optical gate, a no-loss current of 50 to 70 mA and an extinction ratio of more than 50 dB are realized when the injection current is more than no-loss current, and the maximum extinction ratio reaches 71 dB, which is critical for crosstalk suppression. (C) 2003 society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetoexciton polaron (MP) is investigated theoretically in a diluted magnetic semiconductor quantum dot (QD), with the Coulomb interaction and the sp-d exchange interaction included. The MP energy decreases rapidly with increasing magnetic field at low magnetic field and saturates at high magnetic field for small QDs, and the dependences of the MP energy on magnetic field are quite different for different QD radii due to the different carrier-induced magnetic fields B-MP. The competition between the sp-d exchange interaction and the band gap shrinkage results in there being a maximum exhibited by the MP energy With increasing temperature. Our numerical results are in good agreement with experiment (Maksimov A A, Bacher G, MacDonald A, Kulakovskii V D, Forchel A, Becker C R, Landwehr G and Molenkamp L W 2000 Phys. Rev. B 62 R7767).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-quality In0.25Ga0.75As films were grown on low-temperature (LT) ultra-thin GaAs buffer layers formed on GaAs (0 0 1) substrate by molecular beam epitaxy. The epilayers were studied by atomic force microscopy (AFM), photo luminescence (PL) and double crystal X-ray diffraction (DCXRD), All the measurements indicated that LT thin buffer layer technique is a simple but powerful growth technique for heteroepitaxy. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this article is to examine the methods and equipment for abating waste gases and water produced during the manufacture of semiconductor materials and devices. Three separating methods and equipment are used to control three different groups of electronic wastes. The first group includes arsine and phosphine emitted during the processes of semiconductor materials manufacture. The abatement procedure for this group of pollutants consists of adding iodates, cupric and manganese salts to a multiple shower tower (MST) structure. The second group includes pollutants containing arsenic, phosphorus, HF, HCl, NO2, and SO3 emitted during the manufacture of semiconductor materials and devices. The abatement procedure involves mixing oxidants and bases in an oval column with a separator in the middle. The third group consists of the ions of As, P and heavy metals contained in the waste water. The abatement procedure includes adding CaCO3 and ferric salts in a flocculation-sedimentation compact device equipment. Test results showed that all waste gases and water after the abatement procedures presented in this article passed the discharge standards set by the State Environmental Protection Administration of China.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reflectivity spectra at different incident angles of semiconductor microcavity having heavy-hole exciton and light-hole exciton are calculated ly transfer matrix method using the linear dispersion model. Meanwhile we calculate the energy of three cavity polaritons at different incident angles formed by the coupling between cavity mode and the two exciton modes using the three harmonic oscillators coupling model, and the weights of cavity mode and the two exciton modes in the three cavity polaritons. The results indicate that there is obvious anticross between the high energy cavity polariton and the two low energy cavity polaritons with increasing incident angles, and the weights of three modes(cavity mode, heavy-hole exciton mode and light-hole exciton mode) in the three cavity polaritons increase or decrease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering that the coupling among the heavy-hole exciton, light-hole exciton and the cavity photon can form bipolaritons in a quantum semiconductor microcavity, we calculate the group velocities of the cavity polaritons at different incident angles using the coupling model of three harmonic oscillators. The result indicates that the group velocities of the low and middle branches of the cavity polaritons have extrema, but the group velocities of the high branch increase with the increasing incident angle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of hydrostatic pressure tuning, we have observed the strong-coupling exciton-polariton mode in a planar microcavity with an InGaAs/GaAs quantum well embedded in it, over a pressure range from 0.37 to 0.41 GPa. The experimental data can be fitted very well to a corresponding theoretical formula with a unique value of the vacuum Rabi splitting equal to 6.0 meV. A comparison between pressure tuning and other tuning methods is made as regards to what extent the intrinsic features of the exciton and cavity will be influenced during the tuning procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure of diluted magnetic semiconductor (DMS) superlattices under an in-plane magnetic field is studied within the framework of the effective-mass theory; the strain effect is also included in the calculation. The numerical results show that an increase of the in-plane magnetic field renders the DMS superlattice from the direct band-gap system to the indirect band-gap system, and spatially separates the electron and the hole by changing the type-I band alignment to a type-II band alignment. The optical transition probability changes from type I to type II and back to type I like at large magnetic field. This phenomenon arises from the interplay among the superlattice potential profile, the external magnetic field, and the sp-d exchange interaction between the carriers and the magnetic ions. The shear strain induces a strong coupling of the light- and heavy-hole states and a transition of the hole ground states from "light"-hole to "heavy"-hole-like states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eigenmode characteristics for equilateral triangle resonator (ETR) semiconductor microlasers are analysed by the finite-difference time-domain technique and the Pade approximation. The random Gaussian correlation function and sinusoidal function are used to model the side roughness of the ETR. The numerical results show that the roughness can cause the split of the degenerative modes, but the confined modes can still have a high quality factor. For the ETR with a 3 mum side length and the sinusoidal fluctuation, we can have a quality factor of 800 for the fundamental mode in the wavelength of 1500 nm, as the amplitude of roughness is 75 mn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Longitudinal spin transport in diluted magnetic semiconductor superlattices is investigated theoretically. The longitudinal magnetoconductivity (MC) in such systems exhibits an oscillating behavior as function of an external magnetic field. In the weak magnetic-field region the giant Zeeman splitting plays a dominant role that leads to a large negative magnetoconductivity. In the strong magnetic-field region the MC exhibits deep dips with increasing magnetic field. The oscillating behavior is attributed to the interplay between the discrete Landau levels and the Fermi surface. The decrease of the MC at low magnetic field is caused by the s-d exchange interaction between the electron in the conduction band and the magnetic ions. The spin polarization increases rapidly with increasing magnetic field and the longitudinal current becomes spin polarized in strong magnetic field. The effect of spin-disorder scattering on MC is estimated numerically for low magnetic fields and found to be neglectible for our system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The size of equilateral triangle resonator (ETR) needed for confining the fundamental mode is investigated by the total reflection condition of mode light rays and the FDTD numerical simulation. The confinement of the TM modes can be explained by the total reflection of mode light rays, and the confinement of the TE modes requires a larger ETR than the TM modes, which may be caused by excess scattering or radiation loss for the TE modes. With the multilayer staircase approximation, it is found that the spontaneous emission factor of the ETR lasers has the same form as that of strip waveguide lasers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ballistic spin polarized transport through diluted magnetic semiconductor single and double barrier structures is investigated theoretically using a two-component model. The tunneling magnetoresistance (TMR) of the system exhibits oscillating behavior when the magnetic field is varied. An interesting beat pattern in the TMR and spin polarization is found for different nonmagnetic semiconductor/diluted magnetic semiconductor double barrier structures which arises from an interplay between the spin-up and spin-down electron channels which are split by the s-d exchange interaction.