855 resultados para Pure liquids
Resumo:
The electrochemical windows of acetonitrile solutions doped with 0.1 m concentrations of several ionic liquids were examined by cyclic voltammetry at gold and platinum microelectrodes. These results were compared with those observed in the commonly used 0.1 m tetrabutylammonium perchlorate/acetonitrile system as well as with neat ionic liquids. The use of a trifluorotris(pentofluoroethyl)phosphate-based ionic liquid, specifically, as supporting electrolyte in acetonitrile solutions affords a wider anodic window, which is attributed to the high stability of the anionic component of these intrinsically conductive and thermally robust compounds.
Resumo:
Enantiopure Lewis acid complexes of conformationally flexible acyclic and monocyclic NUPHOS diphosphines, delta- and lambda-[(NUPHOS)Pt(OTf)(2)], are efficient catalysts for the carbonyl-ene reaction between various unsymmetrical 1,1'-disubstituted alkenes and phenylglyoxal or ethyl glyoxylate. While catalyst performance was substrate dependent, ee values as high as 95% and yields up to 90% have been obtained. In a number of cases catalysts generated from delta- and lambda-[(NUPHOS)Pt{(S)-BINOL}] showed marked enhancements in enantioselectivity in ionic liquids compared with organic media. Although an enhancement in enantioselectivity was not obtained for all substrate combinations in such cases, the enantioselectivities were comparable to those obtained in dichloromethane. Furthermore, although the ee's are initially comparable in both the ionic liquid and dichloromethane, a gradual erosion of ee with time was found in the organic solvent, whereas the ee remained constant in the ionic liquid. Preliminary kinetic investigations suggest that the decrease in ee may be due to a faster racemization of the catalyst in dichloromethane compared with the ionic liquid.
Resumo:
This paper describes the use of extended X-ray absorption fine structure spectroscopy (EXAFS) to examine the structure of molten salts and ionic liquids and species dissolved in them. The EXAFS theory is briefly described as are the methods by which EXAFS of these systems can be studied. A range of applications have used EXAFS to investigate the structure of metallic species in ionic liquids from extraction studies to catalysts. The area of structural investigations of ionic liquids is still being developed, although growing rapidly, whereas the structure of molten salts has been studied using EXAFS in more detail.
Resumo:
Measurements on the diffusion coefficient of the neutral molecule N,N,N',N'-tetramethyl-para-phenylenediamine and the radical cation and dication generated by its one- and two-electron oxidation, respectively, are reported over the range 298-348 K in both acetonitrile and four room temperature ionic liquids (RTILs). Data were collected using single and double potential step chronamperometry at a gold disk electrode of micrometer dimension, and analysed via fitting to the appropriate analytical expression or, where necessary, to simulation. The variation of diffusion coefficient with temperature was found to occur in an Arrhenius-type manner for all combinations of solute and solvent. For a given ionic liquid, the diffusional activation energies of each species were not only closely equivalent to each other, but also to the RTIL's activation energy of viscous flow. In acetonitrile supported with 0.1 M tetrabutylammonium perchlorate, the ratio in diffusion coefficients of the radial cation and dication tot he neutral molecule were calculated as 0.89 +/- 0.05 and 0.51 +/- 0.03, respectively. In contrast, amongst the ionic liquids the same ratios were determined to be on average 0.53 +/- 0.04 and 0.33 +/- 0.03. The consequences of this dissimilarity are considered in terms of the modelling of voltammetric data gathered within ionic liquid solvents.
Resumo:
The Heck arylation of 2-methylprop-2-en- I -ol in ionic liquids and organic solvents is reported using a range of homogeneous and heterogeneous palladium catalysts. Higher activity is observed in the ionic liquid media compared with N-methyl pyrrolidinone and under solventless conditions. The ionic liquid-catalyst system may be recycled easily with little loss in activity, although significant palladium leaching from the heterogeneous catalyst was observed. In the case of Trans-bis(2,3-dihydro-3-methylbenzothiazole-2-ylidene)diiodopalladium (11) reported to be highly active for this transformation, significant induction petiods were observed indicating that nanoparticles may be responsible for the catalysis. Using the ionic liquid Heck reaction, a recyclable synthesis for the fragrance beta-Lilial((R)) has been developed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The properties of the 1-butyl-3-methylimidazolium salt of the dinuclear mu(4)-(O,O,O',O'-ethane-1,2-dioato)bis[bis-(nitrato-O,O)dioxouranate(VI)] anion have been investigated using electrochemistry, single-crystal X-ray crystallography, and extended X-ray absorbance fine structure spectroscopy: the anion structures from these last two techniques are in excellent agreement with each other. Electrochemical reduction of the complex leads to the a two-electron metal-centered reduction of U(VI) to U(IV), and the production Of UO2, or a complex containing UO2. Under normal conditions, this leads to the coating of the electrode with a passivating film. The presence of volatile organic compounds in the ionic liquids 1-alkyl-3-methylimidazolium nitrate (where the 1-alkyl chain was methyl, ethyl, propyl, butyl, pentyl, hexyl, dodecyl, hexadecyl, or octadecyl) during the oxidative dissolution of uranium(IV) oxide led to the formation of a yellow precipitate. To understand the effect of the cation upon the composition and structure of the precipitates, 1-alkyl-3-methylimidazolium salts of a number of nitratodioxouranate(VI) complexes were synthesized and then analyzed using X-ray crystallography. It was demonstrated that the length of the 1-alkyl chain played an important role, not only in the composition of the complex salt, but also in the synthesis of dinuclear anions containing the bridging mu(4)-(O,O,O',O'-ethane-1,2-dioato), or oxalato, ligand, by protecting it from further oxidation.
Resumo:
1-Alkyl-3-methylimidazolium containing ionic liquids with hexafluorophosphate, bis(trifyl)imide, tetrafluoroborate, and chloride anions form liquid clathrates when mixed with aromatic hydrocarbons; in the system 1,3-dimethylimidazolium hexafluorophosphate-benzene, the aromatic solute could be trapped in the solid state forming a crystalline 2: 1 inclusion compound.
Resumo:
Using neutron and single crystal X-ray diffraction the structures of 1,3-dimethylimidazolim chloride and hexafluorophosphate salts have been determined in the liquid and the solid-state. The relative hydrogen bonding characteristics and sizes of the two anions force the ions to pack differently. In each case, a strong correlation between the crystal structure and liquid structure is found.
Resumo:
The structure of the 1-alkyl-3-methylimidazolium salts of the dinuclear mu(4)-(O,O,O',O'-ethane-1,2-dioato)-bis[bis(nitrato-O,O)dioxouranate(VI)] anion have been investigated using single crystal X-ray crystallography. In addition, EXAFS and electrochemical studies have been performed on the [C(4)mim](+) salt which is formed following the oxidative dissolution of uranium(IV) oxide in [C(4)mim][NO3]. EXAFS analysis of the solution following UO2 dissolution indicates a mixture of uranyl nitrate and mu(4)-(O,O,O',O'-ethane-1,2-dioato)-bis[bis(nitrato-O,O)dioxouranate(VI)] anions are formed.
Resumo:
Both substituted imidazoles and 1,3-dialkylimidazolium salts can be fully deuteriated on the heterocyclic ring using D2O over heterogeneous Pd catalysts: deuteriated 1-alkyl-3-methylimidazolium chloride and hexafluorophosphate ionic liquids can also be prepared in good yields utilising readily available and relatively low cost sources of deuterium.
Resumo:
Ionic liquids have been used to support a range of magnesium-and copper-based bis(oxazoline) complexes for the enantioselective Diels-Alder reaction between N-acryloyloxazolidinone and cyclopentadiene. Compared with reaction performed in dichloromethane or diethyl ether, an enhancement in ee is observed with a large increase in reaction rate. In addition, for non-sterically hindered bis(oxazoline) ligands, that is, phenyl functionalised ligands, a reversal in configuration is found in the ionic liquid, 1-ethyl-3-methylimidazolium bis[(trifluoromethanesulfonyl)imide], compared with molecular solvents. Supported ionic liquid phase catalysts have also been developed using surface-modified silica which show good reactivity and enantioselectivity for the case of the magnesium-based bis(oxazoline) complexes. Poor ees and conversion were observed for the analogous copper-based systems. Some drop in ee was found on supporting the catalyst due a drop in the rate of reaction and, therefore, an increase in the contribution from the uncatalysed a chiral reaction.
Resumo:
The chemical equilibrium of mutual interconversions of tert-butylbenzenes was studied in the temperature range 286 to 423 K using chloroaluminate ionic liquids as a catalyst. Enthalpies of five reactions of isomerization and transalkylation of tert-butylbenzenes were obtained from temperature dependences of the corresponding equilibrium constants in the liquid phase. Molar enthalpies of vaporization of methyl-tert-butylbenzenes and 1,4-ditert-butylbenzene were obtained by the transpiration method and were used for a recalculation of enthalpies of reactions and equilibrium constants into the gaseous phase. Using these experimental results, ab initio methods (B3LYP and G3MP2) have been tested for prediction thermodynamic functions of the five reactions under study successfully. Thermochemical investigations of tert-butyl benzenes available in the literature combined with experimental results have helped to resolve contradictions in the available thermochemical data for tert-butylbenzene and to recommend consistent and reliable enthalpies of formation for this compound in the liquid and the gaseous state.
Resumo:
The synthesis and photophysical evaluation of two enatiomerially pure dimetallic lanthanide luminescent triple-stranded helicates is described. The two systems, formed from the chiral (R,R) ligand 1 and (S,S) ligand 2, were produced as single species in solution, where the excitation of either the naphthalene antennae or the pyridiyl units gave rise to Eu(III) emission in a variety of solvents. Excitation of the antennae also gave rise to circularly polarized Eu(III) luminescence emissions for Eu2:13 and Eu2:23 that were of equal intensity and opposite sign, confirming their enantiomeric nature in solution providing a basis upon which we were able to assign the absolute configurations of Eu2:13 and Eu2:23.
Resumo:
Neural network models have been explored for the prediction of the liquid-liquid equilibrium data and aromatic/aliphatic selectivity values. Four ternary systems composed of toluene, heptane, and the ionic liquids 1-ethyl-3-methylimidazolium ethylsulfate, or 1,3-dimethylimidazolium methylsulfate were investigated at 313.2 and 348.2 K.
Resumo:
Refractive index determination of minerals and gems often requires their immersion in fluids with the same refractive index. However, these natural materials frequently have refractive indices above the ranges of common organic solvents. Most available high refractive index immersion materials are solid at room temperature, toxic, noxious, corrosive, carcinogenic, or any combination thereof. Since the physical properties of ionic liquids can be tuned by varying the cation and/or anion, we have developed immersion fluids for mineralogical studies which are relatively benign. We report here the syntheses of a range of ionic liquids ( many novel) based on the 1-alkyl-3-methylimidazolium cation, which all have refractive indices greater than 1.4, and can be used as immersion fluids for optical mineralogy studies. We further show that for a series of ionic liquids with the same anion, the refractive indices can be adjusted by systematic changes in the cation.