936 resultados para Probabilistic Optimal Power Flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Majoritarian Parliamentary System, the government has a constitutional right to call an early election. This right provides the government a control to achieve its objective to remain in power for as long as possible. We model the early election problem mathematically using opinion polls data as a stochastic process to proxy the government's probability of re-election. These data measure the difference in popularity between the government and the opposition. We fit a mean reverting Stochastic Differential Equation to describe the behaviour of the process and consider the possibility for the government to use other control tools, which are termed 'boosts' to induce shocks to the opinion polls by making timely policy announcements or economic actions. These actions improve the government's popularity and have some impact upon the early-election exercise boundary. © Austral. Mathematical Soc. 2005.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power systems are large scale nonlinear systems with high complexity. Various optimization techniques and expert systems have been used in power system planning. However, there are always some factors that cannot be quantified, modeled, or even expressed by expert systems. Moreover, such planning problems are often large scale optimization problems. Although computational algorithms that are capable of handling large dimensional problems can be used, the computational costs are still very high. To solve these problems, in this paper, investigation is made to explore the efficiency and effectiveness of combining mathematic algorithms with human intelligence. It had been discovered that humans can join the decision making progresses by cognitive feedback. Based on cognitive feedback and genetic algorithm, a new algorithm called cognitive genetic algorithm is presented. This algorithm can clarify and extract human's cognition. As an important application of this cognitive genetic algorithm, a practical decision method for power distribution system planning is proposed. By using this decision method, the optimal results that satisfy human expertise can be obtained and the limitations of human experts can be minimized in the mean time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Process optimisation and optimal control of batch and continuous drum granulation processes are studied in this paper. The main focus of the current research has been: (i) construction of optimisation and control relevant, population balance models through the incorporation of moisture content, drum rotation rate and bed depth into the coalescence kernels; (ii) investigation of optimal operational conditions using constrained optimisation techniques; (iii) development of optimal control algorithms based on discretized population balance equations; and (iv) comprehensive simulation studies on optimal control of both batch and continuous granulation processes. The objective of steady state optimisation is to minimise the recycle rate with minimum cost for continuous processes. It has been identified that the drum rotation-rate, bed depth (material charge), and moisture content of solids are practical decision (design) parameters for system optimisation. The objective for the optimal control of batch granulation processes is to maximize the mass of product-sized particles with minimum time and binder consumption. The objective for the optimal control of the continuous process is to drive the process from one steady state to another in a minimum time with minimum binder consumption, which is also known as the state-driving problem. It has been known for some time that the binder spray-rate is the most effective control (manipulative) variable. Although other possible manipulative variables, such as feed flow-rate and additional powder flow-rate have been investigated in the complete research project, only the single input problem with the binder spray rate as the manipulative variable is addressed in the paper to demonstrate the methodology. It can be shown from simulation results that the proposed models are suitable for control and optimisation studies, and the optimisation algorithms connected with either steady state or dynamic models are successful for the determination of optimal operational conditions and dynamic trajectories with good convergence properties. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of acceleration skewness on sheet flow sediment transport rates (q) over bar (s) is analysed using new data which have acceleration skewness and superimposed currents but no boundary layer streaming. Sediment mobilizing forces due to drag and to acceleration (similar to pressure gradients) are weighted by cosine and sine, respectively, of the angle phi(.)(tau)phi(tau) = 0 thus corresponds to drag dominated sediment transport, (q) over bar (s)similar to vertical bar u(infinity)vertical bar u(infinity), while phi(tau) = 90 degrees corresponds to total domination by the pressure gradients, (q) over bar similar to du(infinity)/dt. Using the optimal angle, phi = 51 degrees based on that data, good agreement is subsequently found with data that have strong influence from boundary layer streaming. Good agreement is also maintained with the large body of U-tube data simulating sine waves with superimposed currents and second-order Stokes waves, all of which have zero acceleration skewness. The recommended model can be applied to irregular waves with arbitrary shape as long as the assumption negligible time lag between forcing and sediment transport rate is valid. With respect to irregular waves, the model is much easier to apply than the competing wave-by-wave models. Issues for further model developments are identified through a comprehensive data review.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new methodology is proposed for the analysis of generation capacity investment in a deregulated market environment. This methodology proposes to make the investment appraisal using a probabilistic framework. The probabilistic production simulation (PPC) algorithm is used to compute the expected energy generated, taking into account system load variations and plant forced outage rates, while the Monte Carlo approach has been applied to model the electricity price variability seen in a realistic network. The model is able to capture the price and hence the profitability uncertainties for generator companies. Seasonal variation in the electricity prices and the system demand are independently modeled. The method is validated on IEEE RTS system, augmented with realistic market and plant data, by using it to compare the financial viability of several generator investments applying either conventional or directly connected generator (powerformer) technologies. The significance of the results is assessed using several financial risk measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a method to analyze the first order eigenvalue sensitivity with respect to the operating parameters of a power system. The method is based on explicitly expressing the system state matrix into sub-matrices. The eigenvalue sensitivity is calculated based on the explicitly formed system state matrix. The 4th order generator model and 4th order exciter system model are used to form the system state matrix. A case study using New England 10-machine 39-bus system is provided to demonstrate the effectiveness of the proposed method. This method can be applied into large scale power system eigenvalue sensitivity with respect to operating parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new control algorithm using parallel braking resistor (BR) and serial fault current limiter (FCL) for power system transient stability enhancement is presented in this paper. The proposed control algorithm can prevent transient instability during first swing by immediately taking away the transient energy gained in faulted period. It can also reduce generator oscillation time and efficiently make system back to the post-fault equilibrium. The algorithm is based on a new system energy function based method to choose optimal switching point. The parallel BR and serial FCL resistor can be switched at the calculated optimal point to get the best control result. This method allows optimum dissipation of the transient energy caused by disturbance so to make system back to equilibrium in minimum time. Case studies are given to verify the efficiency and effectiveness of this new control algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grid computing is an advanced technique for collaboratively solving complicated scientific problems using geographically and organisational dispersed computational, data storage and other recourses. Application of grid computing could provide significant benefits to all aspects of power system that involves using computers. Based on our previous research, this paper presents a novel grid computing approach for probabilistic small signal stability (PSSS) analysis in electric power systems with uncertainties. A prototype computing grid is successfully implemented in our research lab to carry out PSSS analysis on two benchmark systems. Comparing to traditional computing techniques, the gird computing has given better performances for PSSS analysis in terms of computing capacity, speed, accuracy and stability. In addition, a computing grid framework for power system analysis has been proposed based on the recent study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate an investment project in the competitive electricity market, there are several key factors that affects the project's value: the present value that the project could bring to investor, the possible future course of actions that investor has and the project's management flexibility. The traditional net present value (NPV) criteria has the ability to capture the present value of the project's future cash flow, but it fails to assess the value brought by market uncertainty and management flexibility. By contrast with NPV, the real options approach (ROA) method has the advantage to combining the uncertainty and flexibility in evaluation process. In this paper, a framework for using ROA to evaluate the generation investment opportunity has been proposed. By given a detailed case study, the proposed framework is compared with NPV and showing a different results

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ancillary service plays a key role in maintaining operation security of the power system in a competitive electricity market. The spinning reserve is one of the most important ancillary services that should be provided effectively. This paper presents the design of an integrated market for energy and spinning reserve service with particular emphasis on coordinated dispatch of bulk power and spinning reserve services. A new market dispatching mechanism has been developed to minimize the cost of service while maintaining system security. Genetic algorithms (GA) are used for finding the global optimal solutions for this dispatch problem. Case studies and corresponding analyses have been carried out to demonstrate and discuss the efficiency and usefulness of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an approach for optimal design of a fully regenerative dynamic dynamometer using genetic algorithms. The proposed dynamometer system includes an energy storage mechanism to adaptively absorb the energy variations following the dynamometer transients. This allows the minimum power electronics requirement at the mains power supply grid to compensate for the losses. The overall dynamometer system is a dynamic complex system and design of the system is a multi-objective problem, which requires advanced optimisation techniques such as genetic algorithms. The case study of designing and simulation of the dynamometer system indicates that the genetic algorithm based approach is able to locate a best available solution in view of system performance and computational costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oggi, i dispositivi portatili sono diventati la forza trainante del mercato consumer e nuove sfide stanno emergendo per aumentarne le prestazioni, pur mantenendo un ragionevole tempo di vita della batteria. Il dominio digitale è la miglior soluzione per realizzare funzioni di elaborazione del segnale, grazie alla scalabilità della tecnologia CMOS, che spinge verso l'integrazione a livello sub-micrometrico. Infatti, la riduzione della tensione di alimentazione introduce limitazioni severe per raggiungere un range dinamico accettabile nel dominio analogico. Minori costi, minore consumo di potenza, maggiore resa e una maggiore riconfigurabilità sono i principali vantaggi dell'elaborazione dei segnali nel dominio digitale. Da più di un decennio, diverse funzioni puramente analogiche sono state spostate nel dominio digitale. Ciò significa che i convertitori analogico-digitali (ADC) stanno diventando i componenti chiave in molti sistemi elettronici. Essi sono, infatti, il ponte tra il mondo digitale e analogico e, di conseguenza, la loro efficienza e la precisione spesso determinano le prestazioni globali del sistema. I convertitori Sigma-Delta sono il blocco chiave come interfaccia in circuiti a segnale-misto ad elevata risoluzione e basso consumo di potenza. I tools di modellazione e simulazione sono strumenti efficaci ed essenziali nel flusso di progettazione. Sebbene le simulazioni a livello transistor danno risultati più precisi ed accurati, questo metodo è estremamente lungo a causa della natura a sovracampionamento di questo tipo di convertitore. Per questo motivo i modelli comportamentali di alto livello del modulatore sono essenziali per il progettista per realizzare simulazioni veloci che consentono di identificare le specifiche necessarie al convertitore per ottenere le prestazioni richieste. Obiettivo di questa tesi è la modellazione del comportamento del modulatore Sigma-Delta, tenendo conto di diverse non idealità come le dinamiche dell'integratore e il suo rumore termico. Risultati di simulazioni a livello transistor e dati sperimentali dimostrano che il modello proposto è preciso ed accurato rispetto alle simulazioni comportamentali.