993 resultados para Nonsmooth Optimization
Resumo:
A novel approach is proposed for the simultaneous optimization of mobile phase pH and gradient steepness in RP-HPLC using artificial neural networks. By presetting the initial and final concentration of the organic solvent, a limited number of experiments with different gradient time and pH value of mobile phase are arranged in the two-dimensional space of mobile phase parameters. The retention behavior of each solute is modeled using an individual artificial neural network. An "early stopping" strategy is adopted to ensure the predicting capability of neural networks. The trained neural networks can be used to predict the retention time of solutes under arbitrary mobile phase conditions in the optimization region. Finally, the optimal separation conditions can be found according to a global resolution function. The effectiveness of this method is validated by optimization of separation conditions for amino acids derivatised by a new fluorescent reagent.
Resumo:
By manipulation of applied pressure or voltage, pressurized flow capillary electrochromatography (P-CEC) permits unique control of selectivity for ionic solutes. A simple mathematical model has been developed to describe the quantitative relationship between the electrochromatographic retention factor (k(*)) of charged solutes and the applied voltage and pressure. The validity of the model was verified experimentally with hydrophilic interaction mode CEC (HI-CEC). On the basis of the model developed, it was found that the value of k(*) could be predicted accurately using only a limited number of data points from the initial experiments at different voltages or pressures. Correlation between the experimentally measured and calculated k(*) was excellent, with a correlation coefficient greater than 0.999. Optimization for the separation of peptides by P-CEC was also performed successfully on the basis of the proposed model.
Resumo:
A novel method for the optimization of pH value and composition of mobile phase in HPLC using artificial neural networks and uniform design is proposed. As the first step. seven initial experiments were arranged and run according to uniform design. Then the retention behavior of the solutes is modeled using back-propagation neural networks. A trial method is used to ensure the predicting capability of neural networks. Finally, the optimal separation conditions can be found according to a global resolution function. The effectiveness of this method is validated by optimization of separation conditions for both basic and acidic samples.
Resumo:
The optimization of the organic modifier concentration in micellar electrokinetic capillary chromatography (MECC) has been achieved by a uniform design and iterative optimization method, which has been developed for the optimization of composition of the mobile phase in high performance liquid chromatography. According to the proposed method, the uniform design technique has been applied to design the starting experiments, which can reduce the number of experiments compared with traditional simultaneous methods, such as the orthano design. The hierarchical chromatographic response function has been modified to evaluate the separation quality of a chromatogram in MECC. An iterative procedure has been adopted to search the optimal concentration of organic modifiers for improving the accuracy of retention predicted and the quality of the chromatogram. Validity of the optimization method has been proved by the separation of 31 aromatic compounds in MECC. (C) 2000 John Wiley & Sons, Inc.
Resumo:
IEEE Computer Society; International Association for; Computer and Information Science, ACIS
Resumo:
The density and distribution of spatial samples heavily affect the precision and reliability of estimated population attributes. An optimization method based on Mean of Surface with Nonhomogeneity (MSN) theory has been developed into a computer package with the purpose of improving accuracy in the global estimation of some spatial properties, given a spatial sample distributed over a heterogeneous surface; and in return, for a given variance of estimation, the program can export both the optimal number of sample units needed and their appropriate distribution within a specified research area. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis, structures, photophysics, electrochemistry and electrophosphorescent properties of new red phosphorescent cyclometalated iridium(III) isoquinoline complexes, bearing 9-arylcarbazolyl chromophores, are reported. The functional properties of these red phosphors correlate well with the results of density functional theory calculations. The highest occupied molecular orbital levels of these complexes are raised by the integration of a carbazole unit to the iridium isoquinoline core so that the hole-transporting ability is improved in the resulting complexes relative to those with I-phenylisoquinoline ligands. All of the complexes are highly thermally stable and emit an intense red light at room temperature with relatively short lifetimes that are beneficial for highly efficient organic light-emitting diodes (OLEDs).
Resumo:
In this report, gold nanoparticles (AuNPs) labeled by Raman reporters (AuNPs-R6G) were assembled on glass and used as the seeds to in situ grow silver-coated nanostructures based on silver enhancer solution, forming the nanostructures of AuNPs-R6G@Ag, which were characterized by scanning electron microscopy (SEM) and UV-visible spectroscopy. More importantly, the obtained silver-coated nanostructures can be used as a surface enhancement Raman scattering (SERS) substrate. The different SERS activities can be controlled by the silver deposition time and assembly time of AuNPs-R6G on glass. The results indicate that the maximum SERS activity could be obtained on AuNPs-R6G when these nanostructures were assembled on glass for 2 h with silver deposition for 2 min.
Resumo:
The explicit expression between composition and mechanical properties of silicone rubber was derived from the physics of polymer elasticity, the implicit expression among material composition, reaction conditions and reaction efficiency was obtained from chemical thermodynamics and kinetics, and then an implicit multi-objective optimization model was constructed. Genetic algorithm was applied to optimize material composition and reaction conditions, and the finite element method of cross-linking reaction processes was used to solve multi-objective functions, on the basis of which a new optimization methodology of crosslinking reaction processes was established. Using this methodology, rubber materials can be designed according to pre-specified requirements.
Resumo:
Target transformation factor analysis was used to correct spectral interference in inductively coupled plasma atomic emission spectrometry (ICP-BES) for the determination of rare earth impurities in high purity thulium oxide. Data matrix was constructed with pure and mixture vectors and background vector. A method based on an error evaluation function was proposed to optimize the peak position, so the influence of the peak position shift in spectral scans on the determination was eliminated or reduced. Satisfactory results were obtained using factor analysis and the proposed peak position optimization method.
Resumo:
Chromosome manipulation for commercially valuable marine animals plays an important role in aquaculture. The special reproductive characteristics of shrimp make it difficult to control fertilization and synchronize egg development, so research on chromosome manipulation in shrimp has proceeded very slowly. In the present study, triploid shrimp Fenneropenaeus chinensis were induced by heat shocks and the optimal-inducing condition was screened at different spawning temperatures. Level of triploid induction for each treatment was evaluated by flow cytometry at nauplius stage. The highest level of triploid induction reached to more than 90%. Starting time for each treatment was very crucial for triploid induction in shrimp. One optimal treatment condition for triploid induction was heat shock (29-32 degreesC), starting at 18-20 min for duration of 10 min. These conditions varied depending on the temperature at spawning. Triploid level at embryo stage and nauplius stage was not different, suggesting the same hatching rate between diploids and triploids. Heat shock is a very effective way to induce triploids in this species, and can be easily used on large scale without any harmful effect on the environment as compared with chemical treatment. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The chitosanase production was markedly enhanced by substrate induction, statistical optimization of medium composition and culture conditions by Microbacteritan sp. OU01 in shake-flask. A significant influence of (NH4)(2)SO4, MgSO4 center dot 7H(2)O and initial pH on chitosanase production was noted with Plackett-Burman design. It was then revealed with the method of steepest ascent and response surface methodology (RSM) that 19.0 g/L (NH4)(2)SO4, 1.3 g/L MgSO4 and an initial pH of 2.0 were optimum for the production of chitosanase; colloidal chitosan appeared to be the best inducer for chitosanase production by Microbacterium sp. OU01. This optimization strategy led to the enhancement of chitosanase from 3.6 U/mL to 118 U/mL. (c) 2006 Elsevier Ltd. All rights reserved.