881 resultados para Mouse embryos


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Araucaria angustifolia is an endangered Brazilian native conifer tree. The aim of the present work was to identify differentially expressed proteins between mature and germinated embryos of A. angustifolia, using one and two dimensional gel electrophoresis approaches followed by protein identification by tandem mass spectrometry. The identities of 32 differentially expressed protein spots from two dimensional gel maps were successfully determined, including proteins and enzymes involved in storage mobilization such as the vicilin-like storage protein and proteases. A label free approach, based on spectral counts, resulted in detection of 10 and 14 mature and germinated enriched proteins, respectively. Identified proteins were mainly related to energetic metabolism pathways, translational processes. oxidative stress regulation and cellular signaling. The integrated use of both strategies permitted a comprehensive protein expression overview of changes in germinated embryos in relation to matures, providing insights into the this process in a recalcitrant seed species. Applications of the data generated on the monitoring and control of in vitro somatic embryos were discussed. Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(In vitro Propagation of Heliconia bihai L. from Zygotic Embryos). The internal morphology of embryos from immature and mature fruits of Hcliconia bihai (L.) L. cv. Lobster Claw Two was examined. Embryos were inoculated into MS media (full MS and 1/2 MS) and GA(1) (0.2.5 and 5 mg L(-1)) with either sucrose or glucose. These plantlets were then replicated and transferred to MS medium (full MS or 1/2 MS) with 0 or 2.5 mg L(-1) BAP and their multiplication was evaluated 30 and 45 days after inoculation. The genetic variability of the multiplied plants was estimated using isoenzyme analyses. The internal morphology of the mature embryos revealed their tissues to be in more advanced stages of differentiation than immature embryos. In the conversion phase, 85% of the inoculated embryos developed into plants in the 1/2 MS medium with sucrose, in contrast to only 41% of the embryos that were cultivated with glucose. In the multiplication phase, plants cultivated in 1/2 MS medium with 2.5 mg L(-1) BAP demonstrated more buds. Isoenzyme analyses showed pattern changes in terms of the color intensity and the migration of some of the bands. These results may be associated with differences in the ages of the mother plants and of the plantlets obtained in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present work was to induce somatic embryogenesis from zygotic embryos of Passiflora cincinnata Masters. Zygotic embryos formed calli on media with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.5 mu M benzyladenine (BA) after 30 days of in vitro culture. A concentration of 18.1 mu M 2,4-D resulted in the largest number of somatic embryos. Embryogenic calli were yellowish and friable, forming whitish proembryogenic masses. Morphologically, embryogenic cells were small and had large nuclei and dense cytoplasm, whereas non-embryogenic cells were elongated, with small nuclei and less dense cytoplasm. Calli cultured under white light on basal Murashige and Skoog`s medium with activated charcoal produced embryos in all developmental stages. There were differences among the treatments, with some leading to the production of calli with embryos and some only to callus formation. Some abnormalities were associated with somatic embryos, including fused axes, fused cotyledons and polycotyledonary embryos. Production of secondary somatic embryos occurred in the first cycle of primary embryo development. Secondary embryos differentiated from the surface of the protodermal layer of primary embryos with intense cell proliferation, successive mitotic divisions in the initial phase of embryoid development, and a vascular system formed with no connection to the parental tissue. This secondary embryogenic system of P. cincinnata is characterized by intense proliferation and maintenance of embryogenic competence after successive subcultures. This reproducible protocol opens new prospects for massive propagation and is an alternative to the current organogenesis-based transformation protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mu hiding resistance associated protein 2 (Mrp2) is a canalicular transporter responsible for organic anion secretion into bile. Mrp2 activity is regulated by insertion into the plasma membrane; however, the factors that control this are not understood. Calcium (Ca(2+)) signaling regulates exocytosis of vesicles in most cell types, and the type II inositol 1,4,5-triphosphate receptor (InsP(3)R2) regulates Ca(2+) release in the canalicular region of hepatocytes. However, the role of InsP(3)R2 and of Ca(2+) signals in canalicular insertion and function of Mrp2 is not known. The aim of this study was to determine the role of InsP(3)R2-mediated Ca(2+) signals in targeting Mrp2 to the canalicular membrane. Livers, isolated hepatocytes, and hepatocytes in collagen sandwich culture from wild-type (WT) and InsP(3)R2 knockout (KO) mice were used for western blots, confocal immunofluorescence, and time-lapse imaging of Ca(2+) signals and of secretion of a fluorescent organic anion. Plasma membrane insertion of green fluorescent protein (GFP)-Mrp2 expressed in HepG2 cells was monitored by total internal reflection microscopy. InsP(3)R2 was concentrated in the canalicular region of WT mice but absent in InsP(3)R2 KO livers, whereas expression and localization of InsP(3)R1 was preserved, and InsP(3)R3 was absent from both WT and KO livers. Ca(2+) signals induced by either adenosine triphosphate (ATP) or vasopressin were impaired in hepatocytes lacking InsP(3)R2. Canalicular secretion of the organic anion 5-chloromethylfluorescein diacetate (CMFDA) was reduced in KO hepatocytes, as well as in WT hepatocytes treated with 1,2-bis(o-aminophenoxy)ethane-N,N,N`,N`-tetra-acetic acid (BAPTA). Moreover, the choleretic effect of tauroursodeoxycholic acid (TUDCA) was impaired in InsP(3)R2 KO mice. Finally, ATP increased GFP-Mrp2 fluorescence in the plasma membrane of HepG2 cells, and this also was reduced by BAPTA. Conclusion: InsP(3)R2-mediated Ca(2+) signals enhance organic anion secretion into bile by targeting Mrp2 to the canalicular membrane. (HEPATOLOGY 2010;52:327-337)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we investigated energy metabolism in the mdx mouse brain. To this end, prefrontal cortex, cerebellum, hippocampus, striatum, and cortex were analyzed. There was a decrease in Complex I but not in Complex 11 activity in all structures. There was an increase in Complex III activity in striatum and a decrease in Complex IV activity in prefrontal cortex and striatum. Mitochondrial creatine kinase activity was increased in hippocampus, prefrontal cortex, cortex, and striatum. Our results indicate that there is energy metabolism dysfunction in the mdx mouse brain. Muscle Nerve 41: 257-260, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dystrophin is a protein found at the plasmatic membrane in muscle and postsynaptic membrane of some neurons, where it plays an important role on synaptic transmission and plasticity. Its absence is associated with Duchenne`s muscular dystrophy (DMD), in which cognitive impairment is found. Oxidative stress appears to be involved in the physiopathology of DMD and its cognitive dysfunction. In this regard, the present study investigated oxidative parameters (lipid and protein peroxidation) and antioxidant enzymes activities (superoxide dismutase and catalase) in prefrontal cortex, cerebellum, hippocampus, striatum and cortex tissues from male dystrophic mdx and normal C57BL10 mice. We observed (I) reduced lipid peroxidation in striatum and protein peroxidation in cerebellum and prefrontal cortex; (2) increased superoxide dismutase activity in cerebellum, prefrontal cortex, hippocampus and striatum: and (3) reduced catalase activity in striatum. It seems by our results, that the superoxide dismutase antioxidant mechanism is playing a protective role against lipid and protein peroxidation in mdx mouse brain. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adaptive potential of a species to a changing environment and in disease defence is primarily based on genetic variation. Immune genes, such as genes of the major histocompatibility complex (MHC), may thereby be of particular importance. In marsupials, however, there is very little knowledge about natural levels and functional importance of MHC polymorphism, despite their key role in the mammalian evolution. In a previous study, we discovered remarkable differences in the MHC class II diversity between two species of mouse opossums (Gracilinanus microtarsus, Marmosops incanus) from the Brazilian Atlantic forest, which is one of the most endangered hotspots for biodiversity conservation. Since the main forces in generating MHC diversity are assumed to be pathogens, we investigated in this study gastrointestinal parasite burden and functional associations between the individual MHC constitution and parasite load. We tested two contrasting scenarios, which might explain differences in MHC diversity between species. We predicted that a species with low MHC diversity would either be under relaxed selection pressure by low parasite diversity (`Evolutionary equilibrium` scenario), or there was a recent loss in MHC diversity leading to a lack of resistance alleles and increased parasite burden (`Unbalanced situation` scenario). In both species it became apparent that the MHC class II is functionally important in defence against gastrointestinal helminths, which was shown here for the first time in marsupials. On the population level, parasite diversity did not markedly differ between the two host species. However, we did observe considerable differences in the individual parasite load (parasite prevalence and infection intensity): while M. incanus revealed low MHC DAB diversity and high parasite load, G. microtarsus showed a tenfold higher population wide MHC DAB diversity and lower parasite burden. These results support the second scenario of an unbalanced situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central actions of leptin are essential for homeostatic control of adipose tissue mass, glucose metabolism, and many autonomic and neuroendocrine systems. In the brain, leptin acts on numerous different cell types via the long-form leptin receptor (LepRb) to elicit its effects. The precise identification of leptin`s cellular targets is fundamental to understanding the mechanism of its pleiotropic central actions. We have systematically characterized LepRb distribution in the mouse brain using in situ hybridization in wildtype mice as well as by EYFP immunoreactivity in a novel LepRb-IRES-Cre EYFP reporter mouse line showing high levels of LepRb mRNA/EYFP coexpression. We found substantial LepRb mRNA and EYFP expression in hypothalamic and extrahypothalamic sites described before, including the dorsomedial nucleus of the hypothalamus, ventral premammillary nucleus, ventral tegmental area, parabrachial nucleus, and the dorsal vagal complex. Expression in insular cortex, lateral septal nucleus, medial preoptic area, rostral linear nucleus, and in the Edinger-Westphal nucleus was also observed and had been previously unreported. The LepRb-IRES-Cre reporter line was used to chemically characterize a population of leptin receptor-expressing neurons in the midbrain. Tyrosine hydroxylase and Cre reporter were found to be coexpressed in the ventral tegmental area and in other midbrain dopaminergic neurons. Lastly, the LepRbI-RES-Cre reporter line was used to map the extent of peripheral leptin sensing by central nervous system (CNS) LepRb neurons. Thus, we provide data supporting the use of the LepRb-IRES-Cre line for the assessment of the anatomic and functional characteristics of neurons expressing leptin receptor. J. Comp. Neurol. 514:518-532, 2009. (C) 2009 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The definition of the nerve cell types of the myenteric plexus of the mouse small intestine has become important, as more researchers turn to the use of mice with genetic mutations to analyze roles of specific genes and their products in enteric nervous system function and to investigate animal models of disease. We have used a suite of antibodies to define neurons by their shapes, sizes, and neurochemistry in the myenteric plexus. Anti-Hu antibodies were used to reveal all nerve cells, and the major subpopulations were defined in relation to the Hu-positive neurons. Morphological Type II neurons, revealed by anti-neurofilament and anti-calcitonin gene-related peptide antibodies, represented 26% of neurons. The axons of the Type II neurons projected through the circular muscle and submucosa to the mucosa. The cell bodies were immunoreactive for choline acetyltransferase (ChAT), and their terminals were immunoreactive for vesicular acetylcholine transporter (VAChT). Nitric oxide synthase (NOS) occurred in 29% of nerve cells. Most were also immunoreactive for vasoactive intestinal peptide, but they were not tachykinin (TK)-immunoreactive, and only 10% were ChAT-immunoreactive. Numerous NOS terminals occurred in the circular muscle. We deduced that 90% of NOS neurons were inhibitory motor neurons to the muscle (26% of all neurons) and 10% (3% of all neurons) were interneurons. Calretinin immunoreactivity was found in a high proportion of neurons (52%). Many of these had TK immunoreactivity. Small calretinin neurons were identified as excitatory neurons to the longitudinal muscle (about 20% of neurons, with ChAT/calretinin/+/- TK chemical coding). Excitatory neurons to the circular muscle (about 10% of neurons) had the same coding. Calretinin immunoreactivity also occurred in a proportion of Type II neurons. Thus, over 90% of neurons in the myenteric plexus of the mouse small intestine can be currently identified by their neurochemistry and shape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypothalamus plays especially important roles in various endocrine, autonomic, and behavioral responses that guarantee the survival of both the individual and the species. In the rat, a distinct hypothalamic defensive circuit has been defined as critical for integrating predatory threats, raising an important question as to whether this concept could be applied to other prey species. To start addressing this matter, in the present study, we investigated, in another prey species (the mouse), the pattern of hypothalamic Fos immunoreactivity in response to exposure to a predator (a rat, using the Rat Exposure Test). During rat exposure, mice remained concealed in the home chamber for a longer period of time and increased freezing and risk assessment activity. We were able to show that the mouse and the rat present a similar pattern of hypothalamic activation in response to a predator. Of particular note, similar to what has been described for the rat, we observed in the mouse that predator exposure induces a striking activation in the elements of the medial hypothalamic defensive system, namely, the anterior hypothalamic nucleus, the dorsomedial part of the ventromedial hypothalamic nucleus and the dorsal premammillary nucleus. Moreover, as described for the rat, predator-exposed mice also presented increased Fos levels in the autonomic and parvicellular parts of the paraventricular hypothalamic nucleus, lateral preoptic area and subfornical region of the lateral hypothalamic area. In conclusion, the present data give further support to the concept that a specific hypothalamic defensive circuit should be preserved across different prey species. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The perforated whole-cell configuration of the patch-clamp technique was applied to functionally identified beta-cells in intact mouse pancreatic islets to study the extent of cell coupling between adjacent beta-cells. Using a combination of current- and voltage-clamp recordings, the total gap junctional conductance between beta-cells in an islet was estimated to be 1.22 nS. The analysis of the current waveforms in a voltage-clamped cell ( due to the. ring of an action potential in a neighbouring cell) suggested that the gap junctional conductance between a pair of beta-cells was 0.17 nS. Subthreshold voltage-clamp depolarization (to -55 mV) gave rise to a slow capacitive current indicative of coupling between beta-cells, but not in non-beta-cells, with a time constant of 13.5 ms and a total charge movement of 0.2 pC. Our data suggest that a superficial beta-cell in an islet is in electrical contact with six to seven other beta-cells. No evidence for dye coupling was obtained when cells were dialysed with Lucifer yellow even when electrical coupling was apparent. The correction of the measured resting conductance for the contribution of the gap junctional conductance indicated that the whole-cell K(ATP) channel conductance (G(K,ATP)) falls from approximately 2.5 nS in the absence of glucose to 0.1 nS at 15 mM glucose with an estimated IC(50) of approximately 4 mM. Theoretical considerations indicate that the coupling between beta-cells within the islet is sufficient to allow propagation of [Ca(2+)](i) waves to spread with a speed of approximately 80 mu m s(-1), similar to that observed experimentally in confocal [Ca(2+)](i) imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many macrophage functions are modulated by fatty acids (FAs), including cytokine release, such as tumor necrosis factor-alpha (TNF-alpha). TNF-alpha is of great interest due to its role in the inflammation process observed in several diseases such as rheumatoid arthritis, atherosclerosis, and obesity. However, the mechanisms by which FA effects occur have not been completely elucidated yet. In this study, we used a mouse monocyte lineage (J774 cells) to evaluate the effect of 50 and 100 mu M of saturated (palmitic and stearic acids), monounsaturated (oleic acid) and polyunsaturated (linoleic acid) FAs on TNF-alpha production. Alterations in gene expression, poly(A) tail length and activation of transcription factors were evaluated. Oleic and linoleic acids, usually known as neutral or pro-inflammatory FA, inhibited LPS-induced TNF-alpha secretion by the cells. Saturated FAs were potent inducers of TNF-alpha expression and secretion under basal and inflammatory conditions (in the presence of LPS). Although the effect of the saturated FA was similar, the mechanism involved in each case seem to be distinct, as palmitic acid increased EGR-1 and CREB binding activity and stearic acid increased mRNA poly(A) tail. These results may contribute to the understanding of the molecular mechanisms by which saturated FAs modulate the inflammatory response and may lead to design of associations of dietary and pharmacological strategies to counteract the pathological effects of TNF-alpha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innumerous protocols, using the mouse embryonic stem (ES) cells as model for in vitro study of neurons functional properties and features, have been developed. Most of these protocols are short lasting, which, therefore, does not allow a careful analysis of the neurons maturation, aging, and death processes. We describe here a novel and efficient long-lasting protocol for in vitro ES cells differentiation into neuronal cells. It consists of obtaining embryoid bodies, followed by induction of neuronal differentiation with retinoic acid of nonadherent embryoid bodies (three-dimensional model), which further allows their adherence and formation of adherent neurospheres (AN, bi-dimensional model). The AN can be maintained for at least 12 weeks in culture under repetitive mechanical splitting, providing a constant microenvironment (in vitro niche) for the neuronal progenitor cells avoiding mechanical dissociation of AN. The expression of neuron-specific proteins, such as nestin, sox1, beta III-tubulin, microtubule-associated protein 2, neurofilament medium protein, Tau, neuronal nuclei marker, gamma-aminobutyric acid, and 5-hydroxytryptamine, were confirmed in these cells maintained during 3 months under several splitting. Additionally, expression pattern of microtubule-associated proteins, such as lissencephaly (Lis1) and nuclear distribution element-like (Ndel1), which were shown to be essential for differentiation and migration of neurons during embryogenesis, was also studied. As expected, both proteins were expressed in undifferentiated ES cells, AN, and nonrosette neurons, although presenting different spatial distribution in AN. In contrast to previous studies, using cultured neuronal cells derived from embryonic and adult tissues, only Ndel1 expression was observed in the centrosome region of early neuroblasts from AN. Mature neurons, obtained from ES cells in this work, display ionic channels and oscillations of membrane electrical potential typical of electrically excitable cells, which is a characteristic feature of the functional central nervous system (CNS) neurons. Taken together, our study demonstrated that AN are a long-term culture of neuronal cells that can be used to analyze the process of neuronal differentiation dynamics. Thus, the protocol described here provides a new experimental model for studying neurological diseases associated with neuronal differentiation during early development, as well as it represents a novel source of functional cells that can be used as tools for testing the effects of toxins and/or drugs on neuronal cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To characterize the roles of C-peptide in vascular homeostatic processes, we examined the genes regulated by C-peptide in LEII mouse lung microvascular endothelial cells. Treatment of the cells with C-peptide increased the expression of c-Jun N-terminal kinase 1 (JNK1) mRNA dose-dependently, accompanied by an increase in JNK1 protein content. Prior treatment of the cells with PD98059, an ERK kinase inhibitor or SB203580, a p38MAPK inhibitor, abrogated the C-peptide-elicited JNK1 mRNA expression. These results indicate that C-peptide increases JNK1 protein levels, possibly through ERK- and p38MAPK-dependent activation of JNK. gene transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>Neuropeptides are produced from larger precursors by limited proteolysis, first by endopeptidases and then by carboxypeptidases. Major endopeptidases required for these cleavages include prohormone convertase (PC) 1/3 and PC2. In this study, quantitative peptidomics analysis was used to characterize the specific role PC1/3 plays in this process. Peptides isolated from hypothalamus, amygdala, and striatum of PC1/3 null mice were compared with those from heterozygous and wild-type mice. Extracts were labeled with stable isotopic tags and fractionated by HPLC, after which relative peptide levels were determined using tandem mass spectrometry. In total, 92 peptides were found, of which 35 were known neuropeptides or related peptides derived from 15 distinct secretory pathway proteins: 7B2, chromogranin A and B, cocaine- and amphetamine-regulated transcript, procholecystokinin, proenkephalin, promelanin concentrating hormone, proneurotensin, propituitary adenylate cyclase-activating peptide, proSAAS, prosomatosatin, provasoactive intestinal peptide, provasopressin, secretogranin III, and VGF. Among the peptides derived from these proteins, similar to 1/3 were decreased in the PC1/3 null mice relative to wild-type mice, similar to 1/3 showed no change, and similar to 1/3 increased in PC1/3 null. Cleavage sites were analyzed in peptides that showed no change or that decreased in PC1/3 mice, and these results were compared with peptides that showed no change or decreased in previous peptidomic studies with PC2 null mice. Analysis of these sites showed that while PC1/3 and PC2 have overlapping substrate preferences, there are particular cleavage site residues that distinguish peptides preferred by each PC.