953 resultados para Matrices doublement stochastiques
Resumo:
Starting with non-stoichiometric Zr-B4C powder mixture ZrB2-ZrC matrix composites with SiC particulate addition have been made. It was found that variable amounts (5-25 vol%) of SiC could be incorporated and reactively hot pressed (RHPed) to relative densities of 97-99% at 1400-1500 degrees C. This technique has the potential to fabricate ZrB2-based matrices at low temperatures with a variety of reinforcements whose composition and volume fraction are not limited by stoichiometric considerations. The hardness of the composites is in the range of 17-22 GPa. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Distant repeats between a pair of protein sequences can be exploited to study the various aspects of proteins such as structure-function relationship, disorders due to protein malfunction, evolutionary analysis, etc. An in-depth analysis of the distant repeats would facilitate to establish a stable evolutionary relation of the repeats with respect to their three-dimensional structure. To this effect, an algorithm has been devised to identify the distant repeats in a pair of protein sequences by essentially using the scores of PAM (Percent Accepted Mutation) matrices. The proposed algorithm will be of much use to researchers involved in the comparative study of various organisms based on the amino-acid repeats in protein sequences. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fly ash is a waste by-product obtained from the burning of coal by thermal power plants for generating electricity. When bulk quantities are involved, in order to arrest the fugitive dust, it is stored wet rather than dry. Fly ash contains trace concentrations of heavy metals and other substances in sufficient quantities to be able to leach out over a period of time. In this study an attempt was made to study the leachabilities of a few selected trace metals: Cd, Cu, Cr, Mn, Pb and Zn from two different types of class F fly ashes. Emphasis is also laid on developing an alternative in order to arrest the relative leachabilities of heavy metals after amending them with suitable additives. A standard laboratory leaching test for combustion residues has been employed to study the leachabilities of these trace elements as a function of liquid to solid ratio and pH. The leachability tests were conducted on powdered fly ash samples before and after amending them suitably with the matrices lime and gypsum; they were compacted to their respective proctor densities and cured for periods of 28 and 180 days. A marked reduction in the relative leachabilities of the trace elements was observed to be present at the end of 28 days. These relative leachability values further reduced marginally when tests were performed at the end of 180 days.
Resumo:
In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions. We use the force and moment transformation matrices separately, and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation is applied to a class of Stewart platform manipulator, and a multi-parameter family of isotropic manipulators is identified analytically. We show that it is impossible to obtain a spatially isotropic configuration within this family. We also compute the isotropic configurations of an existing manipulator and demonstrate a procedure for designing the manipulator for isotropy at a given configuration.
Resumo:
Novel mixed-matrix membranes prepared by blending sodium alginate (NaAlg) with polyvinyl alcohol (PVA) and certain heteropolyacids (HPAs), such as phosphomolybdic acid (PMoA), phosphotungstic acid (PWA) and silicotungstic acid (SWA), followed by ex-situ cross-linking with glutaraldehyde (GA) to achieve the desired mechanical and chemical stability, are reported for use as electrolytes in direct methanol fuel cells (DMFCs). NaAlg-PVA-HPA mixed matrices possess a polymeric network with micro-domains that restrict methanol cross-over. The mixed-matrix membranes are characterised for their mechanical and thermal properties. Methanol cross-over rates across NaAlg-PVA and NaAlg-PVA-HPA mixed-matrix membranes are studied by measuring the mass balance of methanol using a density meter. The DMFC using NaAlg-PVA-SWA exhibits a peak power-density of 68 mW cm(-2) at a load current-density of 225 mA cm(-2), while operating at 343 K. The rheological properties of NaAlg and NaAlg-PVA-SWA viscous solutions are studied and their behaviour validated by a non-Newtonian power-law.
Resumo:
Foreign compounds, such as drugs are metabolised in the body in numerous reactions. Metabolic reactions are divided into phase I (functionalisation) and phase II (conjugation) reactions. Uridine diphosphoglucuronosyltransferase enzymes (UGTs) are important catalysts of phase II metabolic system. They catalyse the transfer of glucuronic acid to small lipophilic molecules and convert them to hydrophilic and polar glucuronides that are readily excreted from the body. Liver is the main site of drug metabolism. Many drugs are racemic mixtures of two enantiomers. Glucuronidation of a racemic compound yields a pair of diastereomeric glucuronides. Stereoisomers are interesting substrates in glucuronidation studies since some UGTs display stereoselectivity. Diastereomeric glucuronides of O-desmethyltramadol (M1) and entacapone were selected as model compounds in this work. The investigations of the thesis deal with enzymatic glucuronidation and the development of analytical methods for drug metabolites, particularly diastereomeric glucuronides. The glucuronides were analysed from complex biological matrices, such as urine or from in vitro incubation matrices. Various pretreatment techniques were needed to purify, concentrate and isolate the analytes of interest. Analyses were carried out by liquid chromatography (LC) with ultraviolet (UV) or mass spectrometric (MS) detection or with capillary electromigration techniques. Commercial glucuronide standards were not available for the studies. Enzyme-assisted synthesis with rat liver microsomes was therefore used to produce M1 glucuronides as reference compounds. The glucuronides were isolated by LC/UV and ultra performance liquid chromatography (UPLC)/MS, while tandem mass spectrometry (MS/MS) and nuclear magnetic resonance (NMR) spectroscopy were employed in structural characterisation. The glucuronides were identified as phenolic O-glucuronides of M1. To identify the active UGT enzymes in (±)-M1 glucuronidation recombinant human UGTs and human tissue microsomes were incubated with (±)-M1. The study revealed that several UGTs can catalyse (±)-M1 glucuronidation. Glucuronidation in human liver microsomes like in rat liver microsomes is stereoselective. The results of the studies showed that UGT2B7, most probably, is the main UGT responsible for (±)-M1 glucuronidation in human liver. Large variation in stereoselectivity of UGTs toward (±)-M1 enantiomers was observed. Formation of M1 glucuronides was monitored with a fast and selective UPLC/MS method. Capillary electromigration techniques are known for their high resolution power. A method that relied on capillary electrophoresis (CE) with UV detection was developed for the separation of tramadol and its free and glucuronidated metabolites. The suitability of the method to identify tramadol metabolites in an authentic urine samples was tested. Unaltered tramadol and four of its main metabolites were detected in the electropherogram. A micellar electrokinetic chromatography (MEKC) /UV method was developed for the separation of the glucuronides of entacapone in human urine. The validated method was tested in the analysis of urine samples of patients. The glucuronides of entacapone could be quantified after oral entacapone dosing.
Resumo:
Modal approach is widely used for the analysis of dynamics of flexible structures. However, space analysts yet lack an intimate modal analysis of current spacecraft which are rich with flexibility and possess both structural and discrete damping. Mathematical modeling of such spacecraft incapacitates the existing real transformation procedure, for it cannot include discrete damping, demands uncomputable inversion of a modal matrix inaccessible due to its overwhelming size and does not permit truncation. On the other hand, complex transformation techniques entail more computational time and cannot handle structural damping. This paper presents a real transformation strategy which averts inversion of the associated real transformation matrix, allows truncation and accommodates both forms of damping simultaneously. This is accomplished by establishing a key relation between the real transformation matrix and its adjoint. The relation permits truncation of the matrices and leads to uncoupled pairs of coupled first order equations which contain a number of adjoint eigenvectors. Finally these pairs are solved to obtain a literal modal response of forced gyroscopic damped flexibile systems at arbitrary initial conditions.
Resumo:
Mycotoxins are secondary metabolites of filamentous fungi. They pose a health risk to humans and animals due to their harmful biological properties and common occurrence in food and feed. Liquid chromatography/mass spectrometry (LC/MS) has gained popularity in the trace analysis of food contaminants. In this study, the applicability of the technique was evaluated in multi-residue methods of mycotoxins aiming at simultaneous detection of chemically diverse compounds. Methods were developed for rapid determination of toxins produced by fungal genera of Aspergillus, Fusarium, Penicillium and Claviceps from cheese, cereal based agar matrices and grains. Analytes were extracted from these matrices with organic solvents. Minimal sample clean-up was carried out before the analysis of the mycotoxins with reversed phase LC coupled to tandem MS (MS/MS). The methods were validated and applied for investigating mycotoxins in cheese and ergot alkaloid occurrence in Finnish grains. Additionally, the toxin production of two Fusarium species predominant in northern Europe was studied. Nine mycotoxins could be determined from cheese with the method developed. The limits of quantification (LOQ) allowed the quantification at concentrations varying from 0.6 to 5.0 µg/kg. The recoveries ranged between 96 and 143 %, and the within-day repeatability (as relative standard deviation, RSDr) between 2.3 and 12.1 %. Roquefortine C and mycophenolic acid could be detected at levels of 300 up to 12000 µg/kg in the mould cheese samples analysed. A total of 29 or 31 toxins could be analysed with the method developed for agar matrices and grains, with the LOQs ranging overall from 0.1 to 1250 µg/kg. The recoveries ranged generally between 44 and 139 %, and the RSDr between 2.0 and 38 %. Type-A trichothecenes and beauvericin were determined from the cereal based agar and grain cultures of F. sporotrichioides and F. langsethiae. T-2 toxin was the main metabolite, the average levels reaching 22000 µg/kg in the grain cultures after 28 days of incubation. The method developed for ten ergot alkaloids from grains allowed their quantification at levels varying from 0.01 to 10 µg/kg. The recoveries ranged from 51 to 139 %, and the RSDr from 0.6 to 13.9 %. Ergot alkaloids were measured in barley and rye at average levels of 59 and 720 µg/kg, respectively. The two most prevalent alkaloids were ergocornine and ergocristine. The LC/MS methods developed enabled rapid detection of mycotoxins in such applications where several toxins co-occurred. Generally, the performance of the methods was good, allowing reliable analysis of the mycotoxins of interest with sufficiently low quantification limits. However, the variation in validation results highlighted the challenges related to optimising this type of multi-residue methods. New data was obtained about the occurrence of mycotoxins in mould cheeses and of ergot alkaloids in Finnish grains. In addition, the study revealed the high mycotoxin-producing potential of two common fungi in Finnish crops. The information can be useful when risks related to fungal and mycotoxin contamination will be assessed.
Resumo:
In a max-min LP, the objective is to maximise ω subject to Ax ≤ 1, Cx ≥ ω1, and x ≥ 0 for nonnegative matrices A and C. We present a local algorithm (constant-time distributed algorithm) for approximating max-min LPs. The approximation ratio of our algorithm is the best possible for any local algorithm; there is a matching unconditional lower bound.
Resumo:
The study of soil microbiota and their activities is central to the understanding of many ecosystem processes such as decomposition and nutrient cycling. The collection of microbiological data from soils generally involves several sequential steps of sampling, pretreatment and laboratory measurements. The reliability of results is dependent on reliable methods in every step. The aim of this thesis was to critically evaluate some central methods and procedures used in soil microbiological studies in order to increase our understanding of the factors that affect the measurement results and to provide guidance and new approaches for the design of experiments. The thesis focuses on four major themes: 1) soil microbiological heterogeneity and sampling, 2) storage of soil samples, 3) DNA extraction from soil, and 4) quantification of specific microbial groups by the most-probable-number (MPN) procedure. Soil heterogeneity and sampling are discussed as a single theme because knowledge on spatial (horizontal and vertical) and temporal variation is crucial when designing sampling procedures. Comparison of adjacent forest, meadow and cropped field plots showed that land use has a strong impact on the degree of horizontal variation of soil enzyme activities and bacterial community structure. However, regardless of the land use, the variation of microbiological characteristics appeared not to have predictable spatial structure at 0.5-10 m. Temporal and soil depth-related patterns were studied in relation to plant growth in cropped soil. The results showed that most enzyme activities and microbial biomass have a clear decreasing trend in the top 40 cm soil profile and a temporal pattern during the growing season. A new procedure for sampling of soil microbiological characteristics based on stratified sampling and pre-characterisation of samples was developed. A practical example demonstrated the potential of the new procedure to reduce the analysis efforts involved in laborious microbiological measurements without loss of precision. The investigation of storage of soil samples revealed that freezing (-20 °C) of small sample aliquots retains the activity of hydrolytic enzymes and the structure of the bacterial community in different soil matrices relatively well whereas air-drying cannot be recommended as a storage method for soil microbiological properties due to large reductions in activity. Freezing below -70 °C was the preferred method of storage for samples with high organic matter content. Comparison of different direct DNA extraction methods showed that the cell lysis treatment has a strong impact on the molecular size of DNA obtained and on the bacterial community structure detected. An improved MPN method for the enumeration of soil naphthalene degraders was introduced as an alternative to more complex MPN protocols or the DNA-based quantification approach. The main advantage of the new method is the simple protocol and the possibility to analyse a large number of samples and replicates simultaneously.
Resumo:
People with coeliac disease have to maintain a gluten-free diet, which means excluding wheat, barley and rye prolamin proteins from their diet. Immunochemical methods are used to analyse the harmful proteins and to control the purity of gluten-free foods. In this thesis, the behaviour of prolamins in immunological gluten assays and with different prolamin-specific antibodies was examined. The immunoassays were also used to detect residual rye prolamins in sourdough systems after enzymatic hydrolysis and wheat prolamins after deamidation. The aim was to characterize the ability of the gluten analysis assays to quantify different prolamins in varying matrices in order to improve the accuracy of the assays. Prolamin groups of cereals consist of a complex mixture of proteins that vary in their size and amino acid sequences. Two common characteristics distinguish prolamins from other cereal proteins. Firstly, they are soluble in aqueous alcohols, and secondly, most of the prolamins are mainly formed from repetitive amino acid sequences containing high amounts of proline and glutamine. The diversity among prolamin proteins sets high requirements for their quantification. In the present study, prolamin contents were evaluated using enzyme-linked immunosorbent assays based on ω- and R5 antibodies. In addition, assays based on A1 and G12 antibodies were used to examine the effect of deamidation on prolamin proteins. The prolamin compositions and the cross-reactivity of antibodies with prolamin groups were evaluated with electrophoretic separation and Western blotting. The results of this thesis research demonstrate that the currently used gluten analysis methods are not able to accurately quantify barley prolamins, especially when hydrolysed or mixed in oats. However, more precise results can be obtained when the standard more closely matches the sample proteins, as demonstrated with barley prolamin standards. The study also revealed that all of the harmful prolamins, i.e. wheat, barley and rye prolamins, are most efficiently extracted with 40% 1-propanol containing 1% dithiothreitol at 50 °C. The extractability of barley and rye prolamins was considerably higher with 40% 1-propanol than with 60% ethanol, which is typically used for prolamin extraction. The prolamin levels of rye were lowered by 99.5% from the original levels when an enzyme-active rye-malt sourdough system was used for prolamin degradation. Such extensive degradation of rye prolamins suggest the use of sourdough as a part of gluten-free baking. Deamidation increases the diversity of prolamins and improves their solubility and ability to form structures such as emulsions and foams. Deamidation changes the protein structure, which has consequences for antibody recognition in gluten analysis. According to the resuts of the present work, the analysis methods were not able to quantify wheat gluten after deamidation except at very high concentrations. Consequently, deamidated gluten peptides can exist in food products and remain undetected, and thus cause a risk for people with gluten intolerance. The results of this thesis demonstrate that current gluten analysis methods cannot accurately quantify prolamins in all food matrices. New information on the prolamins of rye and barley in addition to wheat prolamins is also provided in this thesis, which is essential for improving gluten analysis methods so that they can more accurately quantify prolamins from harmful cereals.
Resumo:
Lamb-wave-based damage detection methods using the triangulation technique are not suitable for handling structures with complex shapes and discontinuities as the parametric/analytical representation of these structures is very difficult. The geodesic concept is used along with the triangulation technique to overcome the above problem. The present work is based on the fundamental fact that a wave takes the minimum energy path to travel between two points on any multiply connected surface and this reduces to the shortest distance path or geodesic. The geodesics are computed on the meshed surface of the structure using the fast marching method. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrices are compared and their difference gives the time information about the reflection of waves from the damage. A wavelet transform is used to extract the arrival time information of the wave scattered by the damage from the acquired Lamb wave signals. The computed geodesics and time information are used in the ellipse algorithm of triangulation formulation to locate the loci of possible damage location points for each actuator-sensor pair. The results obtained for all actuator-sensor pairs are combined and the intersection of multiple loci gives the damage location result. Experiments were conducted in aluminum and composite plate specimens to validate this method.
Resumo:
In a max-min LP, the objective is to maximise ω subject to Ax ≤ 1, Cx ≥ ω1, and x ≥ 0. In a min-max LP, the objective is to minimise ρ subject to Ax ≤ ρ1, Cx ≥ 1, and x ≥ 0. The matrices A and C are nonnegative and sparse: each row ai of A has at most ΔI positive elements, and each row ck of C has at most ΔK positive elements. We study the approximability of max-min LPs and min-max LPs in a distributed setting; in particular, we focus on local algorithms (constant-time distributed algorithms). We show that for any ΔI ≥ 2, ΔK ≥ 2, and ε > 0 there exists a local algorithm that achieves the approximation ratio ΔI (1 − 1/ΔK) + ε. We also show that this result is the best possible: no local algorithm can achieve the approximation ratio ΔI (1 − 1/ΔK) for any ΔI ≥ 2 and ΔK ≥ 2.
Resumo:
The influence of the pedogenic and climatic contexts on the formation and preservation of pedogenic carbonates in a climosequence in the Western Ghats (Karnataka Plateau, South West India) has been studied. Along the climosequence, the current mean annual rainfall (MAR) varies within a 80 km transect from 6000 mm at the edge of the Plateau to 500 mm inland. Pedogenic carbonates occur in the MAR range of 500-1200 mm. In the semi-arid zone (MAR: 500-900 mm), carbonates occur (i) as rhick hardpan calcretes on pediment slopes and (ii) as nodular horizons in polygenic black soils (i.e. vertisols). In the sub-humid zone (MAR: 900-1500 mm), pedogenic carbonates are disseminated in the black soil matrices either as loose, irregular and friable nodules of millimetric size or as indurated botryoidal nodules of centimetric to pluricentimetric size. They also occur at the top layers of the saprolite either as disseminated pluricentimetric indurated nodules or carbonate-cemented lumps of centimetric to decimetric size. Chemical and isotopic (Sr-87/Sr-86) compositions of the carbonate fraction were determined after leaching with 0.25 N HCl. The corresponding residual fractions containing both primary minerals and authigenic clays were digested separately and analyzed. The trend defined by the Sr-87/Sr-86 signatures of both labile carbonate fractions and corresponding residual fractions indicates that a part of the labile carbonate fraction is genetically linked to the local soil composition. Considering the residual fraction of each sample as the most likely lithogenic source of Ca in carbonates, it is estimated that from 24% to 82% (55% on average) of Ca is derived from local bedrock weathering, leading to a consumption of an equivalent proportion of atmospheric CO2. These values indicate that climatic conditions were humid enough to allow silicate weathering: MAR at the time of carbonate formation likely ranged from 400 to 700 mm, which is 2- to 3-fold less than the current MAR at these locations. The Sr, U and Mg contents and the (U-234/U-238) activity ratio in the labile carbonate fraction help to understand the conditions of carbonate formation. The relatively high concentrations of Sr, U and Mg in black soil carbonates may indicate fast growth and accumulation compared to carbonates in saprolite, possibly due to a better confinement of the pore waters which is supported by their high (U-234/U-238) signatures, and/or to higher content of dissolved carbonates in the pore waters. The occurrence of Ce, Mn and Fe oxides in the cracks of carbonate reflects the existence of relatively humid periods after carbonate formation. The carbonate ages determined by the U-Th method range from 1.33 +/- 0.84 kyr to 7.5 +/- 2.7 kyr and to a cluster of five ages around 20 kyr, i.e. the Last Glacial Maximum period. The young occurrences are only located in the black soils, which therefore constitute sensitive environments for trapping and retaining atmospheric CO2 even on short time scales. The maximum age of carbonates depends on their location in the climatic gradient: from about 20 kyr for centimetric nodules at Mule Hole (MAR = 1100 mm/yr) to 200 kyr for the calcrete at Gundlupet (MAR = 700 mm/yr, Durand et al., 2007). The intensity of rainfall during wet periods would indeed control the lifetime of pedogenic carbonates and thus the duration of inorganic carbon storage in soils. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Two identities involving quarter-wave plates and half-wave plates are established. These are used to improve on an earlier gadget involving four wave plates leading to a new gadget involving just three plates, a half-wave plate and two quarter-wave plates, which can realize all SU(2) polarization transformations. This gadget is shown to involve the minimum number of quarter-wave and half-wave plates. The analysis leads to a decomposition theorem for SU (2) matrices in terms of factors which are symmetric fourth and eighth roots of the identity.