927 resultados para IMAGE PROCESSING COMPUTER-ASSISTED
Resumo:
A detailed analysis procedure is described for evaluating rates of volumetric change in brain structures based on structural magnetic resonance (MR) images. In this procedure, a series of image processing tools have been employed to address the problems encountered in measuring rates of change based on structural MR images. These tools include an algorithm for intensity non-uniforniity correction, a robust algorithm for three-dimensional image registration with sub-voxel precision and an algorithm for brain tissue segmentation. However, a unique feature in the procedure is the use of a fractional volume model that has been developed to provide a quantitative measure for the partial volume effect. With this model, the fractional constituent tissue volumes are evaluated for voxels at the tissue boundary that manifest partial volume effect, thus allowing tissue boundaries be defined at a sub-voxel level and in an automated fashion. Validation studies are presented on key algorithms including segmentation and registration. An overall assessment of the method is provided through the evaluation of the rates of brain atrophy in a group of normal elderly subjects for which the rate of brain atrophy due to normal aging is predictably small. An application of the method is given in Part 11 where the rates of brain atrophy in various brain regions are studied in relation to normal aging and Alzheimer's disease. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Pectus Carinatum is a deformity of the chest wall, characterized by an anterior protrusion of the sternum, often corrected surgically due to cosmetic motivation. This work presents an alternative approach to the current open surgery option, proposing a novel technique based on a personalized orthosis. Two different processes for the orthosis’ personalization are presented. One based on a 3D laser scan of the patient chest, followed by the reconstruction of the thoracic wall mesh using a radial basis function, and a second one, based on a computer tomography scan followed by a neighbouring cells algorithm. The axial position where the orthosis is to be located is automatically calculated using a Ray-Triangle intersection method, whose outcome is input to a pseudo Kochenek interpolating spline method to define the orthosis curvature. Results show that no significant differences exist between the patient chest physiognomy and the curvature angle and size of the orthosis, allowing a better cosmetic outcome and less initial discomfort
Resumo:
Pectus carinatum (PC) is a chest deformity caused by a disproportionate growth of the costal cartilages compared to the bony thoracic skeleton, pulling the sternum towards, which leads to its protrusion. There has been a growing interest on using the ‘reversed Nuss’ technique as minimally invasive procedure for PC surgical correction. A corrective bar is introduced between the skin and the thoracic cage and positioned on top of the sternum highest protrusion area for continuous pressure. Then, it is fixed to the ribs and kept implanted for about 2–3 years. The purpose of this work was to (a) assess the stresses distribution on the thoracic cage that arise from the procedure, and (b) investigate the impact of different positioning of the corrective bar along the sternum. The higher stresses were generated on the 4th, 5th and 6th ribs backend, supporting the hypothesis of pectus deformities correction-induced scoliosis. The different bar positioning originated different stresses on the ribs’ backend. The bar position that led to lower stresses generated on the ribs backend was the one that also led to the smallest sternum displacement. However, this may be preferred, as the risk of induced scoliosis is lowered.
Resumo:
Pectus Carinatum is a deformity of the chest wall, characterized by an anterior protrusion of the sternum, often corrected surgically due to cosmetic motivation. This work presents an alternative approach to the current open surgery option, proposing a novel technique based on a personalized orthosis. Two different processes for the orthosis’ personalization are presented. One based on a 3D laser scan of the patient chest, followed by the reconstruction of the thoracic wall mesh using a radial basis function, and a second one, based on a computer tomography scan followed by a neighbouring cells algorithm. The axial position where the orthosis is to be located is automatically calculated using a Ray-Triangle intersection method, whose outcome is input to a pseudo Kochenek interpolating spline method to define the orthosis curvature. Results show that no significant differences exist between the patient chest physiognomy and the curvature angle and size of the orthosis, allowing a better cosmetic outcome and less initial discomfort.
Resumo:
Pectus excavatum is the most common deformity of the thorax and usually comprises Computed Tomography (CT) examination for pre-operative diagnosis. Aiming at the elimination of the high amounts of CT radiation exposure, this work presents a new methodology for the replacement of CT by a laser scanner (radiation-free) in the treatment of pectus excavatum using personally modeled prosthesis. The complete elimination of CT involves the determination of ribs external outline, at the maximum sternum depression point for prosthesis placement, based on chest wall skin surface information, acquired by a laser scanner. The developed solution resorts to artificial neural networks trained with data vectors from 165 patients. Scaled Conjugate Gradient, Levenberg-Marquardt, Resilient Back propagation and One Step Secant gradient learning algorithms were used. The training procedure was performed using the soft tissue thicknesses, determined using image processing techniques that automatically segment the skin and rib cage. The developed solution was then used to determine the ribs outline in data from 20 patient scanners. Tests revealed that ribs position can be estimated with an average error of about 6.82±5.7 mm for the left and right side of the patient. Such an error range is well below current prosthesis manual modeling (11.7±4.01 mm) even without CT imagiology, indicating a considerable step forward towards CT replacement by a 3D scanner for prosthesis personalization.
Resumo:
Once in a digital form, a radiographic image may be processed in several ways in order to turn the visualization an act of improved diagnostic value. Practitioners should be aware that, depending on each clinical context, digital image processing techniques are available to help to unveil visual information that is, in fact, carried by the bare digital radiograph and may be otherwise neglected. The range of visual enhancement procedures includes simple techniques that deal with the usual brightness and contrast manipulation up to much more elaborate multi-scale processing that provides customized control over the emphasis given to the relevant finer anatomical details. This chapter is intended to give the reader a practical understanding of image enhancement techniques that might be helpful to improve the visual quality of the digital radiographs and thus to contribute to a more reliable and assertive reporting.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease.
Resumo:
Ao longo dos tempos foi possível constatar que uma grande parte do tempo dos professores é gasta na componente de avaliação. Por esse facto, há já algumas décadas que a correcção automática de texto livre é alvo de investigação. Sendo a correcção de exercícios efectuada pelo computador permite que o professor dedique o seu tempo em tarefas que melhorem a aprendizagem dos alunos. Para além disso, cada vez mais as novas tecnologias permitem o uso de ferramentas com bastante utilidade no ensino, pois para além de facilitarem a exposição do conhecimento também permitem uma maior retenção da informação. Logo, associar ferramentas de gestão de sala de aula à correcção automática de respostas de texto livre é um desafio bastante interessante. O objectivo desta dissertação foi a realização de um estudo relativamente à área de avaliação assistida por computador em que este trabalho se insere. Inicialmente, foram analisados alguns correctores ortográficos para seleccionar aquele que seria integrado no módulo proposto. De seguida, foram estudadas as técnicas mais relevantes e as ferramentas que mais se enquadram no âmbito deste trabalho. Neste contexto, a ideia foi partir da existência de uma ferramenta de gestão de sala de aula e desenvolver um módulo para a correcção de exercícios. A aplicação UNI_NET-Classroom, que foi a ferramenta para a qual o módulo foi desenvolvido, já continha um componente de gestão de exercícios que apenas efectuava a correcção para as respostas de escolha múltipla. Com este trabalho pretendeu-se acrescentar mais uma funcionalidade a esse componente, cujo intuito é dar apoio ao professor através da correcção de exercícios e sugestão da cotação a atribuir. Por último, foram realizadas várias experiências sobre o módulo desenvolvido, de forma a ser possível retirar algumas conclusões para o presente trabalho. A conclusão mais importante foi que as ferramentas de correcção automática são uma mais-valia para os professores e escolas.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo Automação e Electrónica Industrial
Resumo:
Computational Vision stands as the most comprehensive way of knowing the surrounding environment. Accordingly to that, this study aims to present a method to obtain from a common webcam, environment information to guide a mobile differential robot through a path similar to a roadway.
Resumo:
Drilling of composites plates normally uses traditional techniques but damage risk is high. NDT use is important. Damage in a carbon/epoxy plate is evaluated by enhanced X-rays. Four different drills are used. The images are analysed using Computational Vision techniques. Surface roughness is compared. Results suggest strategies for delamination reduction.
Resumo:
Computational Vision stands as the most comprehensive way of knowing the surrounding environment. Accordingly to that, this study aims to present a method to obtain from a common webcam, environment information to guide a mobile differential robot through a path similar to a roadway.
Resumo:
The Casa da Música Foundation, responsible for the management of Casa da Música do Porto building, has the need to obtain statistical data related to the number of building’s visitors. This information is a valuable tool for the elaboration of periodical reports concerning the success of this cultural institution. For this reason it was necessary to develop a system capable of returning the number of visitors for a requested period of time. This represents a complex task due to the building’s unique architectural design, characterized by very large doors and halls, and the sudden large number of people that pass through them in moments preceding and proceeding the different activities occurring in the building. To achieve the technical solution for this challenge, several image processing methods, for people detection with still cameras, were first studied. The next step was the development of a real time algorithm, using OpenCV libraries and computer vision concepts,to count individuals with the desired accuracy. This algorithm includes the scientific and technical knowledge acquired in the study of the previous methods. The themes developed in this thesis comprise the fields of background maintenance, shadow and highlight detection, and blob detection and tracking. A graphical interface was also built, to help on the development, test and tunning of the proposed system, as a complement to the work. Furthermore, tests to the system were also performed, to certify the proposed techniques against a set of limited circumstances. The results obtained revealed that the algorithm was successfully applied to count the number of people in complex environments with reliable accuracy.
Resumo:
Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.