952 resultados para Free surface flows
Resumo:
(Na1-xKx)(0.5)Bi0.5TiO3 (NKBT) (x = 0.1, 0.2, and 0.3) thin films with good surface morphology and rhombohedral perovskite structure were fabricated on quartz substrates by a sol-gel process. The fundamental optical constants (the band gaps, linear refractive indices and absorption coefficients) of the films were obtained through optical transmittance measurements. The nonlinear optical properties were investigated by Z-scan technique performed at 532 nm with a picosecond laser. A two-photon absorption effect closely related with potassium-doping content was found in thin films, and the nonlinear refractive index n(2) increases evidently with potassium-doping. The real part of the third-order nonlinear susceptibility chi((3)) is much larger than its imaginary part, indicating that the third-order optical nonlinear response of the NKBT films is dominated by the optical nonlinear refractive behavior. These results show that NKBT thin films have potential applications in nonlinear optics. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We have studied the effect of low-temperature-deposited (LT) and high-temperature-deposited (FIT) AlN interlayer with various thickness on AlGaN film grown on GaN using c-plane sapphire as substrate. All the Al0.25Ga0.75N films thicker than 1 mum with LT-AlN interlayer or with HT-AlN interlayer were free of cracks, however, their surfaces were different: the Al0.25Ga0.75N films with LT-AlN interlayer showed smooth surface, while those with HT-AlN interlayer exhibit rough surface morphology. The results of X-ray double crystal diffraction and Rutherford backscattering showed that all of the AlGaN films were under compressive strain in the parallel direction. The compressive strain resulted from the effect of interlayer-induced stress relieving and the thermal mismatch for the samples with LT-AlN interlayer, and it was due to the thermal mismatch between AlGaN and the underlying layers for those with HT-AlN interlayer. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
AlInGaN quaternary epilayers have been grown with various TMGa flows by metalorganic chemical vapor deposition to investigate the influence of growth rate on the structural and optical properties. Triple-axis X-ray diffraction measurements show AlInGaN epilayers have good crystalline quality. Photolummescence (PL) measurements show that the emission intensity of AlInGaN epilayers is twenty times stronger than that of AlGaN epilayer with comparable Al content. V-shaped pits are observed at the surface of AlInGaN epilayers by atomic force microscopy (AFM) and transmission electron microscopy (TEM). High growth rate leads to increased density and size of V-shaped pits, but crystalline quality is not degraded. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Narrow stripe selective MOVPE has been used to grow high quality oxide-free InGaAlAs layers on an InP substrate patterned with SiO2 masks at optimized growth conditions. Mirror-like surface morphologies and abrupt cross sections are obtained in all samples without spike growth at the mask edge. For the narrow stripe selectively grown InGaAlAs layers with a mesa width of about 1.2 mu m, a bandgap wavelength shift of 70 nm, a photoluminescence (PL) intensity of more than 80% and a PL full width at half maximum (FWHM) of less than 60 meV are obtained simultaneously with a small mask width variation from 0 to 40 mu m. The characteristics of the thickness enhancement ratio and the PL spectrum dependence on the mask width are presented and explained by considering both the migration effect from a masked region and the lateral vapour diffusion effect.
Resumo:
Large-scale GaN free-standing substrate was obtained by hydride vapor phase epitaxy directly on sapphire with porous network interlayer. The bottom surface N-face and top surface Ga-face showed great difference in anti-etching and optical properties. The variation of optical and structure characteristics were also microscopically identified using spatially resolved cathodoluminescence and micro-Raman spectroscopy in cross-section of the GaN substrate. Three different regions were separated according to luminescent intensity along the film growth orientation. Some tapered inversion domains with high free carrier concentration of 5 x 10(19) cm(-3) protruded up to the surface forming the hexagonal pits. The dark region of upper layer showed good crystalline quality with narrow donor bound exciton peak and low free carrier concentration. Unlike the exponential dependence of the strain distribution, the free-standing GaN substrate revealed a gradual increase of the strain mainly within the near N-polar side region with a thickness of about 50 mu m, then almost kept constant to the top surface. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Bandgap tuning of the InGaAsP/InP multiple quant um well (MQW) laser structure by the impurity-free vacancy diffusion (IFVD) is investigated using photoluminescence. It has been demonstrated that the effects of the plasma bombardment to the:sample surface involved in the IFVD technique can enhance the intermixing of the InGaAsP/InP MQW laser structure. The reliability of the IFVD technique, particularly the effects of the surface decomposition and the intrinsic defects formed in the growth or preparation of the wafer, has been discussed.
Resumo:
We report on the material growth and fabrication of high-performance 980-nm strained quantum-well lasers employing a hybrid material system consisting of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in flexibility of laser design, simple epitaxial growth, and improvement of surface morphology and laser performance. The as-grown InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.95 eV) lasers achieve a low threshold current density of 150 A/cm(2) (at a cavity length of 1500 mu m), internal quantum efficiency of similar to 95%, and low internal loss of 1.8 cm(-1). Both broad-area and ridge-waveguide laser devices are fabricated. For 100-mu m-wide stripe lasers with a cavity length of 800 Irm, a slope efficiency of 1.05 W/A and a characteristic temperature coefficient (T-0) of 230 K are achieved. The lifetime test demonstrates a reliable performance. The comparison with our fabricated InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.87 eV) lasers and Al-free InGaAs-InGaAsP (1.6 eV)-InGaP lasers are also given and discussed. The selective etching between AlGaAs and InGaAsP is successfully used for the formation of a ridge-waveguide structure. For 4-mu m-wide ridge-waveguide laser devices, a maximum output power of 350 mW is achieved. The fundamental mode output power can be up to 190 mW with a slope efficiency as high as 0.94 W/A.
Resumo:
Oxide-free InGaAlAs waveguides have been grown on the InP substrates patterned with pairs of SiO2 mask stripes using narrow stripe selective MOVPE. The mask stripe width is varied from 0 to 40 pm, while the window region width between a pair of mask stripes is fixed at 1.5, 2.5 and 3.5 mu m, respectively. Smooth surface s and flat interfaces are obtained in the selectively grown InQaAlAs waveguides. There exhibit strong dependences of the thickness enhancement ratio and the photoluminescence (PL) spectrum on the mask stripe width and the window region width for the InGaAlAs wavegwdes. A large PL peak wavelength shift of 79 nm and a PL full width of at half maximum (FWHM) of less than 64 meV are obtained simultaneously. Some possible interpretations for our investigations are presented by considering both the migration effect from a masked region (MMR) and the lateral vapor diffusion effect (LVD).
Resumo:
We present the fabrication process and experimental results of 850-nm oxide-confined vertical cavity surface emitting lasers (VCSELs) fabricated by using dielectric-free approach. The threshold current of 0.4 mA, which corresponds to the threshold current density of 0.5 kA/cm(2), differential resistance of 76 Omega, and maximum output power of more than 5 mW are achieved for the dielectric-free VCSEL with a square oxide aperture size of 9 mu m at room temperature (RT). L-I-V characteristics of the dielectric-free VCSEL are compared with those of conventional VCSEL with the similar aperture size, which indicates the way to realize low-cost, low-power consumption VCSELs with extremely simple process. Preliminary study of the temperature-dependent L-I characteristics and modulation response of the dielectric-free VCSEL are also presented.
Resumo:
Highly oriented voids-free 3C-SiC heteroepitaxial layers are grown on φ50mm Si (100) substrates by low pressure chemical vapor deposition (LPCVD). The initial stage of carbonization and the surface morphology of carbonization layers of Si(100) are studied using reflection high energy electron diffraction (RHEED) and scanning electron microscopy (SEM). It is shown that the optimized carbonization temperature for the growth of voids-free 3S-SiC on Si (100) substrates is 1100 ℃. The electrical properties of SiC layers are characterized using Van der Pauw method. The I-V, C-V, and the temperature dependence of I-V characteristics in n-3C-SiC-p-Si heterojunctions with AuGeNi and Al electrical pads are investigated. It is shown that the maximum reverse breakdown voltage of the n-3C-SiC-p-Si heterojunction diodes reaches to 220V at room temperature. These results indicate that the SiC/Si heterojunction diode can be used to fabricate the wide bandgap emitter SiC/Si heterojunction bipolar transistors (HBT's).
Resumo:
The Karman vortex shedding is totally suppressed in flows past a wavy square-section cylinder at a Reynolds number of 100 and the wave steepness of 0.025. Such a phenomenon is illuminated by the numerical simulations. In the present study, the mechanism responsible for it is mainly attributed to the vertical vorticity. The geometric disturbance on the rear surface leads to the appearance of spanwise flow near the base. The specific vertical vorticity is generated on the rear surface and convecting into the near wake. The wake flow is recirculated with the appearance of the pair of recirculating cells. The interaction between the upper and lower shear layers is weakened by such cells, so that the vortex rolls could not be formed and the near wake flow becomes stable.
Resumo:
The diffusive transport properties in microscale convection flows are studied by using the direct simulation Monte Carlo method. The effective diffusion coefficient D is computed from the mean square displacements of simulated molecules based on the Einstein diffusion equation D = x2 t /2t. Two typical convection flows, namely, thermal creep convection and Rayleigh– Bénard convection, are investigated. The thermal creep convection in our simulation is in the noncontinuum regime, with the characteristic scale of the vortex varying from 1 to 100 molecular mean free paths. The diffusion is shown to be enhanced only when the vortex scale exceeds a certain critical value, while the diffusion is reduced when the vortex scale is less than the critical value. The reason for phenomenon of diffusion reduction in the noncontinuum regime is that the reduction effect due to solid wall is dominant while the enhancement effect due to convection is negligible. A molecule will lose its memory of macroscopic velocity when it collides with the walls, and thus molecules are hard to diffuse away if they are confined between very close walls. The Rayleigh– Bénard convection in our simulation is in the continuum regime, with the characteristic length of 1000 molecular mean free paths. Under such condition, the effect of solid wall on diffusion is negligible. The diffusion enhancement due to convection is shown to scale as the square root of the Péclet number in the steady convection regime, which is in agreement with previous theoretical and experimental results. In the oscillation convection regime, the diffusion is more strongly enhanced because the molecules can easily advect from one roll to its neighbor due to an oscillation mechanism. © 2010 American Institute of Physics. doi:10.1063/1.3528310
Resumo:
Plasma in the air is successfully induced by a free-oscillated Nd:YAG laser pulse with a peak power of 10(2-3) W. The initial free electrons for the cascade breakdown process are from the ablated particles from the surface of a heated coal target, likewise induced by the focused laser beam. The laser field compensates the energy loss of the plasma when the corresponding temperature and the images are investigated by fitting the experimental spectra of B-2 Sigma(+) -> X-2 Sigma(+) band of CN radicals in the plasma with the simulated spectra and a 4-frame CCD camera. The electron density is estimated using a simplified Kramer formula. As this interaction occurs in a gas mixture of hydrogen and oxygen, the formation and development of the plasma are weakened or restrained due to the chaining branch reaction in which the OH radicals are accumulated and the laser energy is consumed. Moreover, this laser ignition will initiate the combustion or explosion process of combustible gas and the minimum ignition energy is measured at different initial pressures. The differences in the experimental results compared to those induced by a nanosecond Q-switched laser pulse with a peak power of 10(6-8) W are also discussed. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
Resumo:
Silica-supported molybdenum surface complexes were prepared by the reaction between (N=) Mo(OtBu)(3) and silica via displacement of the tert-butoxy ligands for siloxyls from the silica surface. The structure of the surface molybdenum complexes was well defined by in-situ FT-IR, elemental analysis, H-1 NMR and C-13 CP/MAS NMR techniques. The surface complexes could undergo alcoholysis reaction with CD3OD and CH3OH in the same way as free (N =) Mo(OtBu)(3) and they show high catalytic activity and selectivity in olefin epoxidation. Initial rates up to 24.9 mmol epoxide (mmol Mo)(-1) min(-1) were achieved in the epoxidation of cyclohexene using TBHP as oxidant.
Resumo:
Aptamers, which are in vitro selected functional oligonucleotides, have been employed to design novel biosensors (i.e., aptasensors) due to their inherent selectivity, affinity, and their multifarious advantages over traditional recognition elements. In this work, we reported a multifunctional reusable label-free electrochemical biosensor based on an integrated aptamer for parallel detection of adenosine triphosphate (ATP) and alpha-thrombin, by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). A An electrode as the sensing surface was modified with a part DNA duplex which contained a 5'-thiolated partly complementary strand (PCS) and a mixed aptamer (MBA).