947 resultados para Electronics and Electrical


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, nanoscience and nanotechnology has emerged as one of the most important and exciting frontier areas of research interest in almost all fields of science and technology. This technology provides the path of many breakthrough changes in the near future in many areas of advanced technological applications. Nanotechnology is an interdisciplinary area of research and development. The advent of nanotechnology in the modern times and the beginning of its systematic study can be thought of to have begun with a lecture by the famous physicist Richard Feynman. In 1960 he presented a visionary and prophetic lecture at the meeting of the American Physical Society entitled “there is plenty of room at the bottom” where he speculated on the possibility and potential of nanosized materials. Synthesis of nanomaterials and nanostructures are the essential aspects of nanotechnology. Studies on new physical properties and applications of nanomaterials are possible only when materials are made available with desired size, morphology, crystal structure and chemical composition. Cerium oxide (ceria) is one of the important functional materials with high mechanical strength, thermal stability, excellent optical properties, appreciable oxygen ion conductivity and oxygen storage capacity. Ceria finds a variety of applications in mechanical polishing of microelectronic devices, as catalysts for three-way automatic exhaust systems and as additives in ceramics and phosphors. The doped ceria usually has enhanced catalytic and electrical properties, which depend on a series of factors such as the particle size, the structural characteristics, morphology etc. Ceria based solid solutions have been widely identified as promising electrolytes for intermediate temperature solid oxide fuel cells (SOFC). The success of many promising device technologies depends on the suitable powder synthesis techniques. The challenge for introducing new nanopowder synthesis techniques is to preserve high material quality while attaining the desired composition. The method adopted should give reproducible powder properties, high yield and must be time and energy effective. The use of a variety of new materials in many technological applications has been realized through the use of thin films of these materials. Thus the development of any new material will have good application potential if it can be deposited in thin film form with the same properties. The advantageous properties of thin films include the possibility of tailoring the properties according to film thickness, small mass of the materials involved and high surface to volume ratio. The synthesis of polymer nanocomposites is an integral aspect of polymer nanotechnology. By inserting the nanometric inorganic compounds, the properties of polymers can be improved and this has a lot of applications depending upon the inorganic filler material present in the polymer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dans l’industrie de l’aluminium, le coke de pétrole calciné est considéré comme étant le composant principal de l’anode. Une diminution dans la qualité du coke de pétrole a été observée suite à une augmentation de sa concentration en impuretés. Cela est très important pour les alumineries car ces impuretés, en plus d’avoir un effet réducteur sur la performance des anodes, contaminent le métal produit. Le coke de pétrole est aussi une source de carbone fossile et, durant sa consommation, lors du processus d’électrolyse, il y a production de CO2. Ce dernier est considéré comme un gaz à effet de serre et il est bien connu pour son rôle dans le réchauffement planétaire et aussi dans les changements climatiques. Le charbon de bois est disponible et est produit mondialement en grande quantité. Il pourrait être une alternative attrayante pour le coke de pétrole dans la fabrication des anodes de carbone utilisées dans les cuves d’électrolyse pour la production de l’aluminium. Toutefois, puisqu’il ne répond pas aux critères de fabrication des anodes, son utilisation représente donc un grand défi. En effet, ses principaux désavantages connus sont sa grande porosité, sa structure désordonnée et son haut taux de minéraux. De plus, sa densité et sa conductivité électrique ont été rapportées comme étant inférieures à celles du coke de pétrole. L’objectif de ce travail est d’explorer l’effet du traitement de chaleur sur les propriétés du charbon de bois et cela, dans le but de trouver celles qui s’approchent le plus des spécifications requises pour la production des anodes. L’évolution de la structure du charbon de bois calciné à haute température a été suivie à l’aide de différentes techniques. La réduction de son contenu en minéraux a été obtenue suite à des traitements avec de l’acide chlorhydrique utilisé à différentes concentrations. Finalement, différentes combinaisons de ces deux traitements, calcination et lixiviation, ont été essayées dans le but de trouver les meilleures conditions de traitement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modern automobiles are no longer just mechanical tools. The electronics and computing services they are shipping with are making them not less than a computer. They are massive kinetic devices with sophisticated computing power. Most of the modern vehicles are made with the added connectivity in mind which may be vulnerable to outside attack. Researchers have shown that it is possible to infiltrate into a vehicle’s internal system remotely and control the physical entities such as steering and brakes. It is quite possible to experience such attacks on a moving vehicle and unable to use the controls. These massive connected computers can be life threatening as they are related to everyday lifestyle. First part of this research studied the attack surfaces in the automotive cybersecurity domain. It also illustrated the attack methods and capabilities of the damages. Online survey has been deployed as data collection tool to learn about the consumers’ usage of such vulnerable automotive services. The second part of the research portrayed the consumers’ privacy in automotive world. It has been found that almost hundred percent of modern vehicles has the capabilities to send vehicle diagnostic data as well as user generated data to their manufacturers, and almost thirty five percent automotive companies are collecting them already. Internet privacy has been studies before in many related domain but no privacy scale were matched for automotive consumers. It created the research gap and motivation for this thesis. A study has been performed to use well established consumers privacy scale – IUIPC to match with the automotive consumers’ privacy situation. Hypotheses were developed based on the IUIPC model for internet consumers’ privacy and they were studied by the finding from the data collection methods. Based on the key findings of the research, all the hypotheses were accepted and hence it is found that automotive consumers’ privacy did follow the IUIPC model under certain conditions. It is also found that a majority of automotive consumers use the services and devices that are vulnerable and prone to cyber-attacks. It is also established that there is a market for automotive cybersecurity services and consumers are willing to pay certain fees to avail that.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The last two decades have seen many exciting examples of tiny robots from a few cm3 to less than one cm3. Although individually limited, a large group of these robots has the potential to work cooperatively and accomplish complex tasks. Two examples from nature that exhibit this type of cooperation are ant and bee colonies. They have the potential to assist in applications like search and rescue, military scouting, infrastructure and equipment monitoring, nano-manufacture, and possibly medicine. Most of these applications require the high level of autonomy that has been demonstrated by large robotic platforms, such as the iRobot and Honda ASIMO. However, when robot size shrinks down, current approaches to achieve the necessary functions are no longer valid. This work focused on challenges associated with the electronics and fabrication. We addressed three major technical hurdles inherent to current approaches: 1) difficulty of compact integration; 2) need for real-time and power-efficient computations; 3) unavailability of commercial tiny actuators and motion mechanisms. The aim of this work was to provide enabling hardware technologies to achieve autonomy in tiny robots. We proposed a decentralized application-specific integrated circuit (ASIC) where each component is responsible for its own operation and autonomy to the greatest extent possible. The ASIC consists of electronics modules for the fundamental functions required to fulfill the desired autonomy: actuation, control, power supply, and sensing. The actuators and mechanisms could potentially be post-fabricated on the ASIC directly. This design makes for a modular architecture. The following components were shown to work in physical implementations or simulations: 1) a tunable motion controller for ultralow frequency actuation; 2) a nonvolatile memory and programming circuit to achieve automatic and one-time programming; 3) a high-voltage circuit with the highest reported breakdown voltage in standard 0.5 μm CMOS; 4) thermal actuators fabricated using CMOS compatible process; 5) a low-power mixed-signal computational architecture for robotic dynamics simulator; 6) a frequency-boost technique to achieve low jitter in ring oscillators. These contributions will be generally enabling for other systems with strict size and power constraints such as wireless sensor nodes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The transistor laser is a unique three-port device that operates simultaneously as a transistor and a laser. With quantum wells incorporated in the base regions of heterojunction bipolar transistors, the transistor laser possesses advantageous characteristics of fast base spontaneous carrier lifetime, high differential optical gain, and electrical-optical characteristics for direct “read-out” of its optical properties. These devices have demonstrated many useful features such as high-speed optical transmission without the limitations of resonance, non-linear mixing, frequency multiplication, negative resistance, and photon-assisted switching. To date, all of these devices operate as multi-mode lasers without any type of wavelength selection or stabilizing mechanisms. Stable single-mode distributed feedback diode laser sources are important in many applications including spectroscopy, as pump sources for amplifiers and solid-state lasers, for use in coherent communication systems, and now as TLs potentially for integrated optoelectronics. The subject of this work is to expand the future applications of the transistor laser by demonstrating the theoretical background, process development and device design necessary to achieve singlelongitudinal- mode operation in a three-port transistor laser. A third-order distributed feedback surface grating is fabricated in the top emitter AlGaAs confining layers using soft photocurable nanoimprint lithography. The device produces continuous wave laser operation with a peak wavelength of 959.75 nm and threshold current of 13 mA operating at -70 °C. For devices with cleaved ends a side-mode suppression ratio greater than 25 dB has been achieved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have deposited intrinsic amorphous silicon (a-Si:H) using the electron cyclotron resonance (ECR) chemical vapor deposition technique in order to analyze the a-Si:H/c-Si heterointerface and assess the possible application in heterojunction with intrinsic thin layer (HIT) solar cells. Physical characterization of the deposited films shows that the hydrogen content is in the 15-30% range, depending on deposition temperature. The optical bandgap value is always comprised within the range 1.9- 2.2 eV. Minority carrier lifetime measurements performed on the heterostructures reach high values up to 1.3 ms, indicating a well-passivated a-Si:H/c-Si heterointerface for deposition temperatures as low as 100°C. In addition, we prove that the metal-oxide- semiconductor conductance method to obtain interface trap distribution can be applied to the a-Si:H/c-Si heterointerface, since the intrinsic a-Si:H layer behaves as an insulator at low or negative bias. Values for the minimum of D_it as low as 8 × 10^10 cm^2 · eV^-1 were obtained for our samples, pointing to good surface passivation properties of ECR-deposited a-Si:H for HIT solar cell applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Integrated circuit scaling has enabled a huge growth in processing capability, which necessitates a corresponding increase in inter-chip communication bandwidth. As bandwidth requirements for chip-to-chip interconnection scale, deficiencies of electrical channels become more apparent. Optical links present a viable alternative due to their low frequency-dependent loss and higher bandwidth density in the form of wavelength division multiplexing. As integrated photonics and bonding technologies are maturing, commercialization of hybrid-integrated optical links are becoming a reality. Increasing silicon integration leads to better performance in optical links but necessitates a corresponding co-design strategy in both electronics and photonics. In this light, holistic design of high-speed optical links with an in-depth understanding of photonics and state-of-the-art electronics brings their performance to unprecedented levels. This thesis presents developments in high-speed optical links by co-designing and co-integrating the primary elements of an optical link: receiver, transmitter, and clocking.

In the first part of this thesis a 3D-integrated CMOS/Silicon-photonic receiver will be presented. The electronic chip features a novel design that employs a low-bandwidth TIA front-end, double-sampling and equalization through dynamic offset modulation. Measured results show -14.9dBm of sensitivity and energy efficiency of 170fJ/b at 25Gb/s. The same receiver front-end is also used to implement source-synchronous 4-channel WDM-based parallel optical receiver. Quadrature ILO-based clocking is employed for synchronization and a novel frequency-tracking method that exploits the dynamics of IL in a quadrature ring oscillator to increase the effective locking range. An adaptive body-biasing circuit is designed to maintain the per-bit-energy consumption constant across wide data-rates. The prototype measurements indicate a record-low power consumption of 153fJ/b at 32Gb/s. The receiver sensitivity is measured to be -8.8dBm at 32Gb/s.

Next, on the optical transmitter side, three new techniques will be presented. First one is a differential ring modulator that breaks the optical bandwidth/quality factor trade-off known to limit the speed of high-Q ring modulators. This structure maintains a constant energy in the ring to avoid pattern-dependent power droop. As a first proof of concept, a prototype has been fabricated and measured up to 10Gb/s. The second technique is thermal stabilization of micro-ring resonator modulators through direct measurement of temperature using a monolithic PTAT temperature sensor. The measured temperature is used in a feedback loop to adjust the thermal tuner of the ring. A prototype is fabricated and a closed-loop feedback system is demonstrated to operate at 20Gb/s in the presence of temperature fluctuations. The third technique is a switched-capacitor based pre-emphasis technique designed to extend the inherently low bandwidth of carrier injection micro-ring modulators. A measured prototype of the optical transmitter achieves energy efficiency of 342fJ/bit at 10Gb/s and the wavelength stabilization circuit based on the monolithic PTAT sensor consumes 0.29mW.

Lastly, a first-order frequency synthesizer that is suitable for high-speed on-chip clock generation will be discussed. The proposed design features an architecture combining an LC quadrature VCO, two sample-and-holds, a PI, digital coarse-tuning, and rotational frequency detection for fine-tuning. In addition to an electrical reference clock, as an extra feature, the prototype chip is capable of receiving a low jitter optical reference clock generated by a high-repetition-rate mode-locked laser. The output clock at 8GHz has an integrated RMS jitter of 490fs, peak-to-peak periodic jitter of 2.06ps, and total RMS jitter of 680fs. The reference spurs are measured to be –64.3dB below the carrier frequency. At 8GHz the system consumes 2.49mW from a 1V supply.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vols. for 1893-19<23> includes section: "Reviews."

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with renewable carbon from biomass as possible, innovative R&D activities must strive to enhance the current biorefinery process and secure our energy future. Much of my Ph.D. research effort is centered on the study of electrocatalytic conversion of biomass-derived compounds to produce value-added chemicals, biofuels and electrical energy on model electrocatalysts in AEM/PEM-based continuous flow electrolysis cell and fuel cell reactors. High electricity generation performance was obtained when glycerol or crude glycerol was employed as fuels in AEMFCs. The study on selective electrocatalytic oxidation of glycerol shows an electrode potential-regulated product distribution where tartronate and mesoxalate can be selectively produced with electrode potential switch. This finding then led to the development of AEMFCs with selective production of valuable tartronate or mesoxalate with high selectivity and yield and cogeneration of electricity. Reaction mechanisms of electrocatalytic oxidation of ethylene glycol and 1,2-propanediol were further elucidated by means of an on-line sample collection technique and DFT modeling. Besides electro-oxidation of biorenewable alcohols to chemicals and electricity, electrocatalytic reduction of keto acids (e.g. levulinic acid) was also studied for upgrading biomass-based feedstock to biofuels while achieving renewable electricity storage. Meanwhile, ORR that is often coupled in AEMFCs on the cathode was investigated on non-PGM electrocatalyst with comparable activity to commercial Pt/C. The electro-biorefinery process could be coupled with traditional biorefinery operation and will play a significant role in our energy and chemical landscape.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, the IEEE 14 bus test system is used in order to perform adequacy assessment of a transmission system when large scale integration of electric vehicles is considered at distribution levels. In this framework, the symmetric/constr ained fuzzy power flow (SFPF/CFPF) was proposed. The SFPF/CFPF models are suitable to quantify the adequacy of transmission network to satisfy “reasonable demands for the transmission of electricity” as defined, for instance, in the European Directive 2009/72/EC. In this framework, electric vehicles of different types will be treated as fuzzy loads configuring part of the “reasonable demands”. With this study, it is also intended to show how to evaluate the amount of EVs that can be safely accommodated to the grid meeting a certain adequacy level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Changes in soil sulfur (S) fractions were assessed in oil palm and food garden land use systems developed on forest vegetation in humid tropical areas of Popondetta in northern Province. The study tested a hypothesis that S in food gardens are limiting nutrient factor and are significantly lower than in plantations and forests. Subsistence food gardens are under long-term slash and burn practice of cropping and such practice is expected to accelerate loss of biomass S from the ecosystem. From each land use, surface soil (0–15 cm) samples were characterised and further pseudocomplete fractionated for S. Conversion of forest to oil palm production decreased (p<0.001) soil pH and electrical conductivity values. The reserve S fraction in soil increased significantly (p<0.05) due to oil palm production ( 28 %) and food gardening activity (∼ 54 %). However, plant available SO42--S was below 15 mg kg^(−1) in the food garden soils and foliar samples of sweet potato crop indicating deficiency of plant available S. Soil organic carbon content (OC) was positively and significantly correlated to total S content (r=0.533; p<0.001) among the land use systems. Thus, crop management practices that affect OC status of the soils would potentially affect the S availability in soils. The possible changes in the chemical nature of mineralisable organic S compounds leading to enhanced mineralisation and leaching losses could be the reasons for the deficiency of S in the food garden soils. The results of this study conclude that long-term subsistence food gardening activity enriched top soils with reserve S or total S content at the expense of soluble S fraction. The subsistence cropping practices such as biomass burning in food gardens and reduced fallow periods are apparently threatening food security of oil palm households. Improved soil OC management strategies such as avoiding burning of fallow vegetation, improved fallows, mulching with fallow biomass, use of manures and S containing fertilisers must be promoted to sustain food security in smallholder oil palm system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Se presentan las propiedades eléctricas del compuesto Cu3BiS3 depositado por co-evaporación. Este es un nuevo compuesto que puede tener propiedades adecuadas para ser utilizado como capa absorbente en celdas solares. Las muestras fueron caracterizadas a través de medidas de efecto Hall y fotovoltaje superficial transiente (SPV). A través de medidas de efecto Hall se encontró que la concentración de portadores de carga n es del orden de 1016 cm-3 independiente de la relación de masas de Cu/Bi. También se encontró que la movilidad de este compuesto (μ del orden de 4 cm2V -1s-1) varía de acuerdo con los mecanismos de transporte que la gobiernan en dependencia con la temperatura. A partir de las medidas de SPV se encontró alta densidad de defectos superficiales, defectos que son pasivados al superponer una capa buffer sobre el compuesto Cu3BiS3.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Se presentan los modelos de hopping de rango variable (variable range hopping; VRH), vecinos cercanos (nearest neighbor hopping; NNH) y barreras de potencial presentes en las fronteras de grano; como mecanismos de transporte eléctrico predominantes en los materiales semiconductores para aplicaciones fotovoltaicas. Las medidas de conductividad a oscuras en función de temperatura fueron realizadas para región de bajas temperaturas entre 120 y 400 K con Si y compuestos Cu3BiS2 y Cu2ZnSnSe4. Siguiendo la teoría de percolación, se obtuvieron parámetros hopping y la densidad de estados cerca del nivel de Fermi, N(EF), para todas las muestras. A partir de los planteamientos dados por Mott para VRH, se presentó el modelo difusional, que permitió establecer la relación entre la conductividad y la densidad de estados de defecto o estados localizados en el gap del material. El análisis comparativo entre modelos, evidenció, que es posible obtener mejora hasta de un orden de magnitud en valores para cada uno de los parámetros hopping que caracterizan el material.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the semiarid region of Brazil the use of irrigation systems for applying fertilizers in horticulture is the primary means for incorporating nutrients in the soil. However, this technique still requires its use in wine vines to be assessed. In view of this, this study aimed to assess nitrate and potassium concentrations in soil fertigated with nitrogen and potassium fertilizers in 3 wine grape growing cycles. A field experiment was conducted with ?Syrah? wine grapes, in Petrolina, Pernambuco, Brazil; it assessed five nitrogen doses (0, 15, 30, 60 and 120 kg ha-1) and five K2O doses (0, 15, 30, 60 and 120 kg ha-1) applied by drip irrigation system with two emitters per plant, with a flow rate of 4 L h-1. The experimental design used was the factorial split-plot, making up 13 combinations arranged in 4 randomized blocks. Soil solution samples were collected weekly with the aid of porous cup extractors for all treatments and at depths of 0.4 and 0.6 m by determining nitrate and potassium concentrations and electrical conductivity. Increased levels of both nutrients in the irrigation water increased the availability of nitrate and potassium in the soil solution. The highest nitrate and potassium concentrations were found in the second growing cycle at both depths studied.