919 resultados para ESEO spacecraft simulator thermal power
Resumo:
The concept of moving block signallings (MBS) has been adopted in a few mass transit railway systems. When a dense queue of trains begins to move from a complete stop, the trains can re-start in very close succession under MBS. The feeding substations nearby are likely to be overloaded and the service will inevitably be disturbed unless substations of higher power rating are used. By introducing starting time delays among the trains or limiting the trains’ acceleration rate to a certain extent, the peak energy demand can be contained. However, delay is introduced and quality of service is degraded. An expert system approach is presented to provide a supervisory tool for the operators. As the knowledge base is vital for the quality of decisions to be made, the study focuses on its formulation with a balance between delay and peak power demand.
Resumo:
High reliability of railway power systems is one of the essential criteria to ensure quality and cost-effectiveness of railway services. Evaluation of reliability at system level is essential for not only scheduling maintenance activities, but also identifying reliability-critical components. Various methods to compute reliability on individual components or regularly structured systems have been developed and proven to be effective. However, they are not adequate for evaluating complicated systems with numerous interconnected components, such as railway power systems, and locating the reliability critical components. Fault tree analysis (FTA) integrates the reliability of individual components into the overall system reliability through quantitative evaluation and identifies the critical components by minimum cut sets and sensitivity analysis. The paper presents the reliability evaluation of railway power systems by FTA and investigates the impact of maintenance activities on overall reliability. The applicability of the proposed methods is illustrated by case studies in AC railways.
Resumo:
Fault tree analysis (FTA) is presented to model the reliability of a railway traction power system in this paper. First, the construction of fault tree is introduced to integrate components in traction power systems into a fault tree; then the binary decision diagram (BDD) method is used to evaluate fault trees qualitatively and quantitatively. The components contributing to the reliability of overall system are identified with their relative importance through sensitivity analysis. Finally, an AC traction power system is evaluated by the proposed methods.
Resumo:
The thermal decomposition of halloysite-potassium acetate intercalation compound was investigated by thermogravimetric analysis and infrared emission spectroscopy. The X-ray diffraction patterns indicated that intercalation of potassium acetate into halloysite caused an increase of the basal spacing from 1.00 to 1.41 nm. The thermogravimetry results show that the mass losses of intercalation the compound occur in main three main steps, which correspond to (a) the loss of adsorbed water (b) the loss of coordination water and (c) the loss of potassium acetate and dehydroxylation. The temperature of dehydroxylation and dehydration of halloysite is decreased about 100 °C. The infrared emission spectra clearly show the decomposition and dehydroxylation of the halloysite intercalation compound when the temperature is raised. The dehydration of the intercalation compound is followed by the loss of intensity of the stretching vibration bands at region 3600-3200 cm-1. Dehydroxylation is followed by the decrease in intensity in the bands between 3695 and 3620 cm-1. Dehydration was completed by 300 °C and partial dehydroxylation by 350 °C. The inner hydroxyl group remained until around 500 °C.
Resumo:
Streaming SIMD Extensions (SSE) is a unique feature embedded in the Pentium III and P4 classes of microprocessors. By fully exploiting SSE, parallel algorithms can be implemented on a standard personal computer and a theoretical speedup of four can be achieved. In this paper, we demonstrate the implementation of a parallel LU matrix decomposition algorithm for solving power systems network equations with SSE and discuss advantages and disadvantages of this approach.
Resumo:
Streaming SIMD Extensions (SSE) is a unique feature embedded in the Pentium III class of microprocessors. By fully exploiting SSE, parallel algorithms can be implemented on a standard personal computer and a theoretical speedup of four can be achieved. In this paper, we demonstrate the implementation of a parallel LU matrix decomposition algorithm for solving power systems network equations with SSE and discuss advantages and disadvantages of this approach.
Resumo:
Zero energy buildings (ZEB) and zero energy homes (ZEH) are a current hot topic globally for policy makers (what are the benefits and costs), designers (how do we design them), the construction industry (can we build them), marketing (will consumers buy them) and researchers (do they work and what are the implications). This paper presents initial findings from actual measured data from a 9 star (as built), off-ground detached family home constructed in south-east Queensland in 2008. The integrated systems approach to the design of the house is analysed in each of its three main goals: maximising the thermal performance of the building envelope, minimising energy demand whilst maintaining energy service levels, and implementing a multi-pronged low carbon approach to energy supply. The performance outcomes of each of these stages are evaluated against definitions of Net Zero Carbon / Net Zero Emissions (Site and Source) and Net Zero Energy (onsite generation v primary energy imports). The paper will conclude with a summary of the multiple benefits of combining very high efficiency building envelopes with diverse energy management strategies: a robustness, resilience, affordability and autonomy not generally seen in housing.
Resumo:
Computer simulation has been widely accepted as an essential tool for the analysis of many engineering systems. It is nowadays perceived to be the most readily available and feasible means of evaluating operations in real railway systems. Based on practical experience and theoretical models developed in various applications, this paper describes the design of a general-purpose simulation system for train operations. Its prime objective is to provide a single comprehensive computer-aided engineering tool for most studies on railway operations so that various aspects of the railway systems with different operation characteristics can be investigated and analysed in depth. This system consists of three levels of simulation. The first is a single-train simulator calculating the running time of a train between specific points under different track geometry and traction conditions. The second is a dual-train simulator which is to find the minimum headway between two trains under different movement constraints, such as signalling systems. The third is a whole-system multi-train simulator which carries out process simulation of the real operation of a railway system according to a practical or planned train schedule or headway; and produces an overall evaluation of system performance.
Resumo:
Abstract Being as a relatively new approach of signalling, moving-block scheme significantly increases line capacity, especially on congested railways. This paper describes a simulation system for multi-train operation under moving-block signalling scheme. The simulator can be used to calculate minimum headways and safety characteristics under pre-set timetables or headways and different geographic and traction conditions. Advanced software techniques are adopted to support the flexibility within the simulator so that it is a general-purpose computer-aided design tool to evaluate the performance of moving block signalling.
Resumo:
The Streaming SIMD extension (SSE) is a special feature that is available in the Intel Pentium III and P4 classes of microprocessors. As its name implies, SSE enables the execution of SIMD (Single Instruction Multiple Data) operations upon 32-bit floating-point data therefore, performance of floating-point algorithms can be improved. In electrified railway system simulation, the computation involves the solving of a huge set of simultaneous linear equations, which represent the electrical characteristic of the railway network at a particular time-step and a fast solution for the equations is desirable in order to simulate the system in real-time. In this paper, we present how SSE is being applied to the railway network simulation.
Resumo:
This paper investigates how to interface the wireless application protocol (WAP) architecture to the SCADA system running distributed network protocol (DNP) in a power process plant. DNP is a well-developed protocol to be applied in the supervisory control and data acquisition (SCADA) system but the system control centre and remote terminal units (RTUs) are presently connected through a local area network. The conditions in a process plant are harsh and the site is remote. Resources for data communication are difficult to obtain under these conditions, thus, a wireless channel communication through a mobile phone is practical and efficient in a process plant environment. The mobile communication industries and the public have a strong interest in the WAP technology application in mobile phone networks and the WAP application programming interface (API) in power industry applications is one area that requires extensive investigation.
Resumo:
In this website, you can virtually attend all lectures, tutorials, computer Labs and quizzes and also access to lecture notes.
Resumo:
The problem of bubble contraction in a Hele-Shaw cell is studied for the case in which the surrounding fluid is of power-law type. A small perturbation of the radially symmetric problem is first considered, focussing on the behaviour just before the bubble vanishes, it being found that for shear-thinning fluids the radially symmetric solution is stable, while for shear-thickening fluids the aspect ratio of the bubble boundary increases. The borderline (Newtonian) case considered previously is neutrally stable, the bubble boundary becoming elliptic in shape with the eccentricity of the ellipse depending on the initial data. Further light is shed on the bubble contraction problem by considering a long thin Hele-Shaw cell: for early times the leading-order behaviour is one-dimensional in this limit; however, as the bubble contracts its evolution is ultimately determined by the solution of a Wiener-Hopf problem, the transition between the long-thin limit and the extinction limit in which the bubble vanishes being described by what is in effect a similarity solution of the second kind. This same solution describes the generic (slit-like) extinction behaviour for shear-thickening fluids, the interface profiles that generalise the ellipses that characterise the Newtonian case being constructed by the Wiener-Hopf calculation.
Resumo:
This paper reports on the empirical comparison of seven machine learning algorithms in texture classification with application to vegetation management in power line corridors. Aiming at classifying tree species in power line corridors, object-based method is employed. Individual tree crowns are segmented as the basic classification units and three classic texture features are extracted as the input to the classification algorithms. Several widely used performance metrics are used to evaluate the classification algorithms. The experimental results demonstrate that the classification performance depends on the performance matrix, the characteristics of datasets and the feature used.
Resumo:
This paper presents a comprehensive discussion of vegetation management approaches in power line corridors based on aerial remote sensing techniques. We address three issues 1) strategies for risk management in power line corridors, 2) selection of suitable platforms and sensor suite for data collection and 3) the progress in automated data processing techniques for vegetation management. We present initial results from a series of experiments and, challenges and lessons learnt from our project.