998 resultados para Detecção de energia
Resumo:
A method based on enzymatic activities was developed using three enzymes (glycerokinase, glycerol-3-phosphate oxidase and peroxidase) and colorimetric detection for the determination of glycerol in biodiesel. The enzymatic conversion of glycerol produces H2O2 that is eliminated by the action of peroxidase, an oxygen acceptor and 4- aminoantipirine, producing water and a colored compound, which was analyzed. This method showed good linear correlation coefficient (r = 0.9937) in the concentration range of 4.95 x 10-5 to 3.96 x 10-4% (w/w) and had experimental limits of detection and quantitation of 7.10 x 10-6 and 2.10 x 10-5% (w/w), respectively.
Resumo:
In this work was made an investigation about bulk and surface models (at maximum 20 layers) of the TiO2 material in the (001) direction. TiO2 commercial sample was feature using XDR technique to determine phase and crystallites average size. Bulk and (001) surface models were simulated for TiO2 material using DFT/B3LYP and its results were used for calculating energy surface, electronic levels, superficial atomic displacement and charge maps. Atoms of the first and second layers of the slab model showed electronic densities very well organized in the form of chains or wires.
Resumo:
The present work deals with the study of the correlation of free-energy developed in a catalytic system for Suzuki coupling, by way of the Hammett equation. The system presents NCP pincer palladacycle 1 as a catalyst precursor, which proved to be very efficient in the coupling of various aryl boronic acids with aryl halides in previous studies. Thus, the article presented here intends to serve as a support for further investigations and clarifications relating to cross-coupling catalytic cycles.
Resumo:
A simple, fast and inexpensive method was developed to determine essential elements in pellets of rice samples using energy dispersive X-ray fluorescence spectrometry (EDXRF). The accuracy and precision were evaluated using Standard Reference Material (rice flour NIST 1568a), and yielding relative standard deviation below 5%. The paired t-test showed good agreement within 95% confidence values. The detection limits (3σ) of Mn and Zn were 5.1 and 2.2 mg kg-1, respectively. The proposed method proved to be effective when used to determine Mn and Zn in commercial samples of rice without go by stage of decomposition.
Resumo:
Mid-infrared spectroscopy and chemometrics were used to identify adulteration in roasted and ground coffee by addition of coffee husks. Consumers' sensory perception of the adulteration was evaluated by a triangular test of the coffee beverages. Samples containing above 0.5% of coffee husks from pure coffees were discriminated by principal component analysis of the infrared spectra. A partial least-squares regression estimated the husk content in samples and presented a root-mean-square error for prediction of 2.0%. The triangular test indicated that were than 10% of coffee husks are required to cause alterations in consumer perception about adulterated beverages.
Resumo:
The interest in the use of evaporative light scattering detector (ELSD) for the analysis of different classes of natural products has grown over the years. This is because this detector has become an excellent alternative compared to other types of detectors, such as the refractive index detector and the ultraviolet (UV) detector. This review describes the basic principles of ELSD functioning and discusses the advantages and disadvantages in using an ELSD for the analysis of organic compounds. Additionaly, an overview, covering the last 23 years, of ELSD applications in natural products analysis (saponins, terpenes, carbohydrates, glycosides, alkaloids, steroids, flavonoids, peptides, polyketides, coumarins and iridoids) is presented and discussed.
Resumo:
A simple flow system with multiple pulse amperometric detection using a single working electrode is proposed for simultaneous determination of ascorbic (AA) and acetylsalicylic (AAS) acids in pharmaceutical formulations. The procedure is based on application of two potential pulses: 0.90 V/50 ms: oxidation and determination of AA without the interference of AAS; 1.35 V/50 ms: oxidation of both compounds and quantification of AAS by current subtraction using a correction factor. Sampling rate was estimated as 125 injections per hour and the limits of detection were 0.17 and 0.16 µmol L-1 for AA and AAS, respectively. Results for commercial samples agreed with those obtained using HPLC.
Resumo:
This work outlines the historic development of the concept and main theories of energy transfer, as well as the principal experiments carried out to confirm or refute the proposed theories. Energy transfer in coordination compounds is also discussed with a focus on rare earth systems.
Resumo:
A fast analytical method for determination of hydroquinone in pharmaceutical formulations employing batch injection analysis (BIA) with amperometric detection using a boron-doped diamond electrode is described. The supporting electrolyte was a 0.1 mol L-1 H2SO4 solution (the single reagent used for analysis). The method showed good repeatability (RSD of 0.45%, n=20), wide linear range (from 10 to 2000 µmol L-1, R=0.9999), low detection limit (0.016 µmol L-1) and satisfactory recovery values (91-96%). Accuracy of the method was evaluated by comparative analyses using high-performance liquid-chromatography. The ability to replace the electronic pipette by disposable syringes (injection procedure) in BIA systems was also shown.
Resumo:
In this study, a method for determination of hexavalent chromium in aqueous samples using liquid-liquid microextraction (LLME) and detection by Flame Atomic Absorption Spectrometry (F AAS) was developed. The LLME procedure was based on the extraction of Cr (VI) by acetone at a sample pH of 1.2. The use of saturated ammonium sulphate solution allowed effective separation of the aqueous and organic phases and acetone extracted chromium. The sample pH, acetone volume and stirring time were optimized by a full factorial design.
Resumo:
A simple and fast method for the determination of nimesulide (NI) using flow injection analysis with multiple-pulse amperometric (FIA-MPA) detection at a boron-doped diamond (BDD) electrode was developed. The method was based mainly on the application of a four-potential waveform, E1(det) = -0.8 V / 30 ms, E2(det) = 0.6 V / 30 ms, E3(det) = -0.4 V / 30 ms and E4(cleaning) = -0.45 V / 300 ms versus Ag/AgCl (3.0 mol L-1 KCl). NI was detected at three different electrode potentials, at which the nitro group undergoes different redox reactions. The proposed method was selective and sensitive (detection limit of 81.0 nmol L-1), and successfully applied for the determination of NI in pharmaceutical formulations, yielding similar results to those obtained by the reference method.
Resumo:
Coal, natural gas and petroleum-based liquid fuels are still the most widely used energy sources in modern society. The current scenario contrasts with the foreseen shortage of petroleum that was spread out in the beginning of the XXI century, when the concept of "energy security" emerged as an urgent agenda to ensure a good balance between energy supply and demand. Much beyond protecting refineries and oil ducts from terrorist attacks, these issues soon developed to a portfolio of measures related to process sustainability, involving at least three fundamental dimensions: (a) the need for technological breakthroughs to improve energy production worldwide; (b) the improvement of energy efficiency in all sectors of modern society; and (c) the increase of the social perception that education is a key-word towards a better use of our energy resources. Together with these technological, economic or social issues, "energy security" is also strongly influenced by environmental issues involving greenhouse gas emissions, loss of biodiversity in environmentally sensitive areas, pollution and poor solid waste management. For these and other reasons, the implementation of more sustainable practices in our currently available industrial facilities and the search for alternative energy sources that could partly replace the fossil fuels became a major priority throughout the world. Regarding fossil fuels, the main technological bottlenecks are related to the exploitation of less accessible petroleum resources such as those in the pre-salt layer, ranging from the proper characterization of these deep-water oil reservoirs, the development of lighter and more efficient equipment for both exploration and exploitation, the optimization of the drilling techniques, the achievement of further improvements in production yields and the establishment of specialized training programs for the technical staff. The production of natural gas from shale is also emerging in several countries but its production in large scale has several problems ranging from the unavoidable environmental impact of shale mining as well as to the bad consequences of its large scale exploitation in the past. The large scale use of coal has similar environmental problems, which are aggravated by difficulties in its proper characterization. Also, the mitigation of harmful gases and particulate matter that are released as a result of combustion is still depending on the development of new gas cleaning technologies including more efficient catalysts to improve its emission profile. On the other hand, biofuels are still struggling to fulfill their role in reducing our high dependence on fossil fuels. Fatty acid alkyl esters (biodiesel) from vegetable oils and ethanol from cane sucrose and corn starch are mature technologies whose market share is partially limited by the availability of their raw materials. For this reason, there has been a great effort to develop "second-generation" technologies to produce methanol, ethanol, butanol, biodiesel, biogas (methane), bio-oils, syngas and synthetic fuels from lower grade renewable feedstocks such as lignocellulosic materials whose consumption would not interfere with the rather sensitive issues of food security. Advanced fermentation processes are envisaged as "third generation" technologies and these are primarily linked to the use of algae feedstocks as well as other organisms that could produce biofuels or simply provide microbial biomass for the processes listed above. Due to the complexity and cost of their production chain, "third generation" technologies usually aim at high value added biofuels such as biojet fuel, biohydrogen and hydrocarbons with a fuel performance similar to diesel or gasoline, situations in which the use of genetically modified organisms is usually required. In general, the main challenges in this field could be summarized as follows: (a) the need for prospecting alternative sources of biomass that are not linked to the food chain; (b) the intensive use of green chemistry principles in our current industrial activities; (c) the development of mature technologies for the production of second and third generation biofuels; (d) the development of safe bioprocesses that are based on environmentally benign microorganisms; (e) the scale-up of potential technologies to a suitable demonstration scale; and (f) the full understanding of the technological and environmental implications of the food vs. fuel debate. On the basis of these, the main objective of this article is to stimulate the discussion and help the decision making regarding "energy security" issues and their challenges for modern society, in such a way to encourage the participation of the Brazilian Chemistry community in the design of a road map for a safer, sustainable and prosper future for our nation.
Resumo:
The quality of biodiesel is extremely important for its commercialization and use; oxidation of biodiesel is a critical factor because it decreases the fuel storage time. A commercial biodiesel was mixed with synthetic antioxidants, according to a simplex-centroid experimental mixture design, and its stability was evaluated through induction period and activation energy. In all trials, addition of antioxidants increased activation energy in the mixtures containing tertiary butylhydroquinone (TBHQ). When a mixture containing 50% TBHQ and 50% butylated hydroxyanisole was used, synergistic effect was observed, and the major activation energy obtained was 104.43 kJ mol-1.
Resumo:
This report describes a study about the feasibility of using a conventional digital camera, a cell-phone camera, an optical microscope, and a scanner as digital image capture devices on printed microzones. An array containing nine circular zones was drawn using graphics software and printed onto transparency film by a laser printer. Due to its superior analytical performance, the scanner was chosen for the quantitative determination of Fe2+ in pharmaceutical samples. The data achieved using scanned images did not differ statistically from those attained by the reference spectrophotometric method at the confidence level of 0.05.
Resumo:
The binding of [Ru(PAN)(PPh3)2(ISN)]Cl (PAN = 1-(2'-Pyridylazo)-2-naphtholate) to bovine serum albumin (BSA) was investigated by spectroscopic techniques. According to analysis of the results from the Stern-Volmer equation, the ruthenium complex is able to quench the fluorescence intensity of BSA via a dynamic mechanism. The thermodynamic parameters were calculated (ΔH = 30.3 kJ mol-1; ΔS = 195.4 J mol-1 K-1), indicating that hydrophobic force is the main interaction driving force. The site marker competitive experiments revealed that the binding site of ruthenium complex was in the sub-domain IIA of BSA. FTO glass with a film of BSA-[Ru(PAN)(PPh3)2(ISN)]Cl was used as an ascorbic acid sensor. The linear range of the modified electrode was between 1 and 8 × 10-6 mol L-1.