928 resultados para Computational Intelligence System
Resumo:
Current Ambient Intelligence and Intelligent Environment research focuses on the interpretation of a subject’s behaviour at the activity level by logging the Activity of Daily Living (ADL) such as eating, cooking, etc. In general, the sensors employed (e.g. PIR sensors, contact sensors) provide low resolution information. Meanwhile, the expansion of ubiquitous computing allows researchers to gather additional information from different types of sensor which is possible to improve activity analysis. Based on the previous research about sitting posture detection, this research attempts to further analyses human sitting activity. The aim of this research is to use non-intrusive low cost pressure sensor embedded chair system to recognize a subject’s activity by using their detected postures. There are three steps for this research, the first step is to find a hardware solution for low cost sitting posture detection, second step is to find a suitable strategy of sitting posture detection and the last step is to correlate the time-ordered sitting posture sequences with sitting activity. The author initiated a prototype type of sensing system called IntelliChair for sitting posture detection. Two experiments are proceeded in order to determine the hardware architecture of IntelliChair system. The prototype looks at the sensor selection and integration of various sensor and indicates the best for a low cost, non-intrusive system. Subsequently, this research implements signal process theory to explore the frequency feature of sitting posture, for the purpose of determining a suitable sampling rate for IntelliChair system. For second and third step, ten subjects are recruited for the sitting posture data and sitting activity data collection. The former dataset is collected byasking subjects to perform certain pre-defined sitting postures on IntelliChair and it is used for posture recognition experiment. The latter dataset is collected by asking the subjects to perform their normal sitting activity routine on IntelliChair for four hours, and the dataset is used for activity modelling and recognition experiment. For the posture recognition experiment, two Support Vector Machine (SVM) based classifiers are trained (one for spine postures and the other one for leg postures), and their performance evaluated. Hidden Markov Model is utilized for sitting activity modelling and recognition in order to establish the selected sitting activities from sitting posture sequences.2. After experimenting with possible sensors, Force Sensing Resistor (FSR) is selected as the pressure sensing unit for IntelliChair. Eight FSRs are mounted on the seat and back of a chair to gather haptic (i.e., touch-based) posture information. Furthermore, the research explores the possibility of using alternative non-intrusive sensing technology (i.e. vision based Kinect Sensor from Microsoft) and find out the Kinect sensor is not reliable for sitting posture detection due to the joint drifting problem. A suitable sampling rate for IntelliChair is determined according to the experiment result which is 6 Hz. The posture classification performance shows that the SVM based classifier is robust to “familiar” subject data (accuracy is 99.8% with spine postures and 99.9% with leg postures). When dealing with “unfamiliar” subject data, the accuracy is 80.7% for spine posture classification and 42.3% for leg posture classification. The result of activity recognition achieves 41.27% accuracy among four selected activities (i.e. relax, play game, working with PC and watching video). The result of this thesis shows that different individual body characteristics and sitting habits influence both sitting posture and sitting activity recognition. In this case, it suggests that IntelliChair is suitable for individual usage but a training stage is required.
Resumo:
Many-core systems are emerging from the need of more computational power and power efficiency. However there are many issues which still revolve around the many-core systems. These systems need specialized software before they can be fully utilized and the hardware itself may differ from the conventional computational systems. To gain efficiency from many-core system, programs need to be parallelized. In many-core systems the cores are small and less powerful than cores used in traditional computing, so running a conventional program is not an efficient option. Also in Network-on-Chip based processors the network might get congested and the cores might work at different speeds. In this thesis is, a dynamic load balancing method is proposed and tested on Intel 48-core Single-Chip Cloud Computer by parallelizing a fault simulator. The maximum speedup is difficult to obtain due to severe bottlenecks in the system. In order to exploit all the available parallelism of the Single-Chip Cloud Computer, a runtime approach capable of dynamically balancing the load during the fault simulation process is used. The proposed dynamic fault simulation approach on the Single-Chip Cloud Computer shows up to 45X speedup compared to a serial fault simulation approach. Many-core systems can draw enormous amounts of power, and if this power is not controlled properly, the system might get damaged. One way to manage power is to set power budget for the system. But if this power is drawn by just few cores of the many, these few cores get extremely hot and might get damaged. Due to increase in power density multiple thermal sensors are deployed on the chip area to provide realtime temperature feedback for thermal management techniques. Thermal sensor accuracy is extremely prone to intra-die process variation and aging phenomena. These factors lead to a situation where thermal sensor values drift from the nominal values. This necessitates efficient calibration techniques to be applied before the sensor values are used. In addition, in modern many-core systems cores have support for dynamic voltage and frequency scaling. Thermal sensors located on cores are sensitive to the core's current voltage level, meaning that dedicated calibration is needed for each voltage level. In this thesis a general-purpose software-based auto-calibration approach is also proposed for thermal sensors to calibrate thermal sensors on different range of voltages.
Resumo:
Food safety has always been a social issue that draws great public attention. With the rapid development of wireless communication technologies and intelligent devices, more and more Internet of Things (IoT) systems are applied in the food safety tracking field. However, connection between things and information system is usually established by pre-storing information of things into RFID Tag, which is inapplicable for on-field food safety detection. Therefore, considering pesticide residue is one of the severe threaten to food safety, a new portable, high-sensitivity, low-power, on-field organophosphorus (OP) compounds detection system is proposed in this thesis to realize the on-field food safety detection. The system is designed based on optical detection method by using a customized photo-detection sensor. A Micro Controller Unit (MCU) and a Bluetooth Low Energy (BLE) module are used to quantize and transmit detection result. An Android Application (APP) is also developed for the system to processing and display detection result as well as control the detection process. Besides, a quartzose sample container and black system box are also designed and made for the system demonstration. Several optimizations are made in wireless communication, circuit layout, Android APP and industrial design to realize the mobility, low power and intelligence.
Resumo:
As emoções são consideradas a regra central de nossas vidas, tendo grande impacto na tomada de decisões, ações, memória, atenção, etc. Sendo assim, existe grande interesse em simulá-las em ambientes computacionais, possibilitando que situações do cotidiano humano possam ser estudadas em ambientes controlados. Embora existam modelos teóricos para o funcionamento de emoções, estes por si só são insuficientes para uma simulação precisa em meios computacionais. Tendo como base um destes modelos, o modelo OCC, essa dissertação propõe a simulação de emoções em ambientes mutiagentes através da criação de uma rede Bayesiana capaz de traduzir estímulos gerados neste ambiente em emoções. A utilização de redes Bayesianas combinadas à estrutura do modelo OCC busca a adição de imprevisibilidade ao modelo, além de fornecê-lo uma estrutura computacional. A aplicação do modelo proposto a um sistema multiagentes proporciona o estudo da influência das emoções sobre as ações e comportamento dos agentes, possibilitando um estudo de comparação entre os resultados obtidos ao se realizar uma simulação multiagentes clássica e uma simulação multiagentes contendo emoções. De forma a validar e avaliar seu funcionamento, é apresentado o estudo da aplicação da rede Bayesiana de emoções sobre um modelo multiagentes exemplo, observando as variações que as emoções provocam sobre o comportamento dos agentes.
Resumo:
The high performance computing community has traditionally focused uniquely on the reduction of execution time, though in the last years, the optimization of energy consumption has become a main issue. A reduction of energy usage without a degradation of performance requires the adoption of energy-efficient hardware platforms accompanied by the development of energy-aware algorithms and computational kernels. The solution of linear systems is a key operation for many scientific and engineering problems. Its relevance has motivated an important amount of work, and consequently, it is possible to find high performance solvers for a wide variety of hardware platforms. In this work, we aim to develop a high performance and energy-efficient linear system solver. In particular, we develop two solvers for a low-power CPU-GPU platform, the NVIDIA Jetson TK1. These solvers implement the Gauss-Huard algorithm yielding an efficient usage of the target hardware as well as an efficient memory access. The experimental evaluation shows that the novel proposal reports important savings in both time and energy-consumption when compared with the state-of-the-art solvers of the platform.
Resumo:
This work presents a study about a the Baars-Franklin architecture, which defines a model of computational consciousness, and use it in a mobile robot navigation task. The insertion of mobile robots in dynamic environments carries a high complexity in navigation tasks, in order to deal with the constant environment changes, it is essential that the robot can adapt to this dynamism. The approach utilized in this work is to make the execution of these tasks closer to how human beings react to the same conditions by means of a model of computational consci-ousness. The LIDA architecture (Learning Intelligent Distribution Agent) is a cognitive system that seeks tomodel some of the human cognitive aspects, from low-level perceptions to decision making, as well as attention mechanism and episodic memory. In the present work, a computa-tional implementation of the LIDA architecture was evaluated by means of a case study, aiming to evaluate the capabilities of a cognitive approach to navigation of a mobile robot in dynamic and unknown environments, using experiments both with virtual environments (simulation) and a real robot in a realistic environment. This study concluded that it is possible to obtain benefits by using conscious cognitive models in mobile robot navigation tasks, presenting the positive and negative aspects of this approach.
Resumo:
Abstract-The immune system is a complex biological system with a highly distributed, adaptive and self-organising nature. This paper presents an artificial immune system (AIS) that exploits some of these characteristics and is applied to the task of film recommendation by collaborative filtering (CF). Natural evolution and in particular the immune system have not been designed for classical optimisation. However, for this problem, we are not interested in finding a single optimum. Rather we intend to identify a sub-set of good matches on which recommendations can be based. It is our hypothesis that an AIS built on two central aspects of the biological immune system will be an ideal candidate to achieve this: Antigen - antibody interaction for matching and antibody - antibody interaction for diversity. Computational results are presented in support of this conjecture and compared to those found by other CF techniques.
Resumo:
The immune system is a complex biological system with a highly distributed, adaptive and self-organising nature. This paper presents an Artificial Immune System (AIS) that exploits some of these characteristics and is applied to the task of film recommendation by Collaborative Filtering (CF). Natural evolution and in particular the immune system have not been designed for classical optimisation. However, for this problem, we are not interested in finding a single optimum. Rather we intend to identify a sub-set of good matches on which recommendations can be based. It is our hypothesis that an AIS built on two central aspects of the biological immune system will be an ideal candidate to achieve this: Antigen-antibody interaction for matching and idiotypic antibody-antibody interaction for diversity. Computational results are presented in support of this conjecture and compared to those found by other CF techniques.
Resumo:
Reasoning systems have reached a high degree of maturity in the last decade. However, even the most successful systems are usually not general purpose problem solvers but are typically specialised on problems in a certain domain. The MathWeb SOftware Bus (Mathweb-SB) is a system for combining reasoning specialists via a common osftware bus. We described the integration of the lambda-clam systems, a reasoning specialist for proofs by induction, into the MathWeb-SB. Due to this integration, lambda-clam now offers its theorem proving expertise to other systems in the MathWeb-SB. On the other hand, lambda-clam can use the services of any reasoning specialist already integrated. We focus on the latter and describe first experimnents on proving theorems by induction using the computational power of the MAPLE system within lambda-clam.
Resumo:
Neuropeptides affect the activity of the myriad of neuronal circuits in the brain. They are under tight spatial and chemical control and the dynamics of their release and catabolism directly modify neuronal network activity. Understanding neuropeptide functioning requires approaches to determine their chemical and spatial heterogeneity within neural tissue, but most imaging techniques do not provide the complete information desired. To provide chemical information, most imaging techniques used to study the nervous system require preselection and labeling of the peptides of interest; however, mass spectrometry imaging (MSI) detects analytes across a broad mass range without the need to target a specific analyte. When used with matrix-assisted laser desorption/ionization (MALDI), MSI detects analytes in the mass range of neuropeptides. MALDI MSI simultaneously provides spatial and chemical information resulting in images that plot the spatial distributions of neuropeptides over the surface of a thin slice of neural tissue. Here a variety of approaches for neuropeptide characterization are developed. Specifically, several computational approaches are combined with MALDI MSI to create improved approaches that provide spatial distributions and neuropeptide characterizations. After successfully validating these MALDI MSI protocols, the methods are applied to characterize both known and unidentified neuropeptides from neural tissues. The methods are further adapted from tissue analysis to be able to perform tandem MS (MS/MS) imaging on neuronal cultures to enable the study of network formation. In addition, MALDI MSI has been carried out over the timecourse of nervous system regeneration in planarian flatworms resulting in the discovery of two novel neuropeptides that may be involved in planarian regeneration. In addition, several bioinformatic tools are developed to predict final neuropeptide structures and associated masses that can be compared to experimental MSI data in order to make assignments of neuropeptide identities. The integration of computational approaches into the experimental design of MALDI MSI has allowed improved instrument automation and enhanced data acquisition and analysis. These tools also make the methods versatile and adaptable to new sample types.
Resumo:
The immune system is a complex biological system with a highly distributed, adaptive and self-organising nature. This paper presents an Artificial Immune System (AIS) that exploits some of these characteristics and is applied to the task of film recommendation by Collaborative Filtering (CF). Natural evolution and in particular the immune system have not been designed for classical optimisation. However, for this problem, we are not interested in finding a single optimum. Rather we intend to identify a sub-set of good matches on which recommendations can be based. It is our hypothesis that an AIS built on two central aspects of the biological immune system will be an ideal candidate to achieve this: Antigen-antibody interaction for matching and idiotypic antibody-antibody interaction for diversity. Computational results are presented in support of this conjecture and compared to those found by other CF techniques.
Resumo:
Abstract-The immune system is a complex biological system with a highly distributed, adaptive and self-organising nature. This paper presents an artificial immune system (AIS) that exploits some of these characteristics and is applied to the task of film recommendation by collaborative filtering (CF). Natural evolution and in particular the immune system have not been designed for classical optimisation. However, for this problem, we are not interested in finding a single optimum. Rather we intend to identify a sub-set of good matches on which recommendations can be based. It is our hypothesis that an AIS built on two central aspects of the biological immune system will be an ideal candidate to achieve this: Antigen - antibody interaction for matching and antibody - antibody interaction for diversity. Computational results are presented in support of this conjecture and compared to those found by other CF techniques.
Resumo:
The immune system is a complex biological system with a highly distributed, adaptive and self-organising nature. This paper presents an artificial immune system (AIS) that exploits some of these characteristics and is applied to the task of film recommendation by collaborative filtering (CF). Natural evolution and in particular the immune system have not been designed for classical optimisation. However, for this problem, we are not interested in finding a single optimum. Rather we intend to identify a sub-set of good matches on which recommendations can be based. It is our hypothesis that an AIS built on two central aspects of the biological immune system will be an ideal candidate to achieve this: Antigen - antibody interaction for matching and antibody - antibody interaction for diversity. Computational results are presented in support of this conjecture and compared to those found by other CF techniques. Notes: Uwe Aickelin, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
Resumo:
The immune system is a complex biological system with a highly distributed, adaptive and self-organising nature. This paper presents an Artificial Immune System (AIS) that exploits some of these characteristics and is applied to the task of film recommendation by Collaborative Filtering (CF). Natural evolution and in particular the immune system have not been designed for classical optimisation. However, for this problem, we are not interested in finding a single optimum. Rather we intend to identify a sub-set of good matches on which recommendations can be based. It is our hypothesis that an AIS built on two central aspects of the biological immune system will be an ideal candidate to achieve this: Antigen-antibody interaction for matching and idiotypic antibody-antibody interaction for diversity. Computational results are presented in support of this conjecture and compared to those found by other CF techniques.
Resumo:
This paper deals with the development and the analysis of asymptotically stable and consistent schemes in the joint quasi-neutral and fluid limits for the collisional Vlasov-Poisson system. In these limits, the classical explicit schemes suffer from time step restrictions due to the small plasma period and Knudsen number. To solve this problem, we propose a new scheme stable for choices of time steps independent from the small scales dynamics and with comparable computational cost with respect to standard explicit schemes. In addition, this scheme reduces automatically to consistent discretizations of the underlying asymptotic systems. In this first work on this subject, we propose a first order in time scheme and we perform a relative linear stability analysis to deal with such problems. The framework we propose permits to extend this approach to high order schemes in the next future. We finally show the capability of the method in dealing with small scales through numerical experiments.