Dynamic Workload Parallelization and System Calibration on Single-Chip Cloud Computer


Autoria(s): Teräväinen, Sami
Data(s)

01/06/2016

01/06/2016

01/06/2016

Resumo

Many-core systems are emerging from the need of more computational power and power efficiency. However there are many issues which still revolve around the many-core systems. These systems need specialized software before they can be fully utilized and the hardware itself may differ from the conventional computational systems. To gain efficiency from many-core system, programs need to be parallelized. In many-core systems the cores are small and less powerful than cores used in traditional computing, so running a conventional program is not an efficient option. Also in Network-on-Chip based processors the network might get congested and the cores might work at different speeds. In this thesis is, a dynamic load balancing method is proposed and tested on Intel 48-core Single-Chip Cloud Computer by parallelizing a fault simulator. The maximum speedup is difficult to obtain due to severe bottlenecks in the system. In order to exploit all the available parallelism of the Single-Chip Cloud Computer, a runtime approach capable of dynamically balancing the load during the fault simulation process is used. The proposed dynamic fault simulation approach on the Single-Chip Cloud Computer shows up to 45X speedup compared to a serial fault simulation approach. Many-core systems can draw enormous amounts of power, and if this power is not controlled properly, the system might get damaged. One way to manage power is to set power budget for the system. But if this power is drawn by just few cores of the many, these few cores get extremely hot and might get damaged. Due to increase in power density multiple thermal sensors are deployed on the chip area to provide realtime temperature feedback for thermal management techniques. Thermal sensor accuracy is extremely prone to intra-die process variation and aging phenomena. These factors lead to a situation where thermal sensor values drift from the nominal values. This necessitates efficient calibration techniques to be applied before the sensor values are used. In addition, in modern many-core systems cores have support for dynamic voltage and frequency scaling. Thermal sensors located on cores are sensitive to the core's current voltage level, meaning that dedicated calibration is needed for each voltage level. In this thesis a general-purpose software-based auto-calibration approach is also proposed for thermal sensors to calibrate thermal sensors on different range of voltages.

Identificador

http://www.doria.fi/handle/10024/124050

Idioma(s)

en