967 resultados para side chain liquid crystal polymers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dynamically adaptive radar absorber is described which is based on a periodic array of microstrip patches that are printed on a 500 mu m-thick liquid crystal substrate. The measured reflectivity of the structure is less than -38 dB with a 200 MHz -10 dB bandwidth at 10.19 GHz when a +4 DC bias is applied. It is shown that a 34 dB reduction in signal loss occurs when the bias voltage is increased to 20 V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amphiphilic association structures were determined in the system; water, Laureth 4 (approximately C-12(EO)(4)), and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), using visual observation and small angle x-ray diffraction. The system showed a lamellar liquid crystal solubilizing the ionic liquid ([bmim][PF6]) to a maximum of 15%, an isotropic surfactant solution dissolving the ionic liquid to a maximum of 39%, an isotropic ionic liquid solution with less than 0.5% of water and surfactant and finally, an aqueous solution with only traces of surfactant and ionic liquid. The small angle x-ray diffraction results showed the ionic liquid to be solubilized into the lamellar liquid crystal without changing the dimensions of the amphiphile layer or the interlayer spacing dependence on the water content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a study on the effect of the alkyl chain length of the imidazolium ring in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, [C1CnIm][NTf2] (n = 2 to 10), on the mixing properties of (ionic liquid + alcohol) mixtures (enthalpy and volume). We have measured small excess molar volumes with highly asymmetric curves as a function of mole fraction composition (S-shape) with more negative values in the alcohol-rich regions. The excess molar volumes increase with the increase of the alkyl-chain length of the imidazolium cation of the ionic liquid. The values of the partial molar excess enthalpy and the enthalpy of mixing are positive and, for the case of methanol, do not vary monotonously with the length of the alkyl side-chain of the cation on the ionic liquid – increasing from n = 2 to 6 and then decreasing from n = 8. This non-monotonous variation is explained by a more favourable interaction of methanol with the cation head group of the ionic liquid for alkyl chains longer than eight carbon atoms. It is also observed that the mixing is less favourable for the smaller alcohols, the enthalpy of mixing decreasing to less positive values as the alkyl chain of the alcohol increases. Based on the data from this work and on the knowledge of the vapour pressure of {[C1CnIm][NTf2] + alcohol} binary mixtures at T = 298 K reported in the literature, the excess Gibbs free energy, excess enthalpy and excess entropy could be then calculated and it was observed that these mixtures behave like the ones constituted by a non-associating and a non-polar component, with its solution behaviour being determined by the enthalpy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:



Email
Print











The accurate measurement of the permittivity, loss tangent and dielectric anisotropy DC bias dependence for two different liquid crystal (LC) materials in the frequency range 140-165 GHz is described. The electrical characteristics are obtained by curve fitting computed transmission coefficients to the experimental spectral response of a new class of electronically reconfigurable frequency selective surface. The periodic structure is designed to yield bandpass filter characteristics with and without an applied bias control voltage in order to measure the tunability of the LC material which is inserted in a 705 µm-thick cavity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper, a study on the influence of the alkyl chain length in N-alkyl-triethylammonium bis(trifluoromethylsulfonyl)imide ionic liquids, [NR,222][Tf2N] (R   = 6, 8 or 12), on the excess molar enthalpy at 303.15 K and excess molar volume within the temperature interval (283.15–338.15 K) of ionic liquid + methanol mixtures is carried out. Small excess molar volumes with highly asymmetric curves (i.e. S-shape) as a function of mole fraction composition were obtained, with negative values showing in the methanol-rich regions. The excess molar volumes increase with the increase of the alkyl-chain length of the ammonium cation of the ionic liquid and decrease with temperature. The excess enthalpies of selected binary mixtures are positive over the whole composition range and increase slightly with the length of the alkyl side-chain of the cation on the ionic liquid. Both excess properties were subsequently correlated using a Redlich–Kister-type equation, as well as by using the ERAS model. From this semipredictive model the studied excess quantities could be obtained from its chemical and physical contribution. Finally, the COSMOThermX software has been used to evaluate its prediction capability on the excess enthalpy for investigated mixtures at 303.15 K and 0.1 MPa. From this work, it appears that COSMOThermX method predicts this property with good accuracy of approx. 10%, providing at the same time the correct order of magnitude of the partial molar excess enthalpies at infinite dilution for the studied ILs,

<img height="21" border="0" style="vertical-align:bottom" width="33" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0378381213006869-si13.gif">H¯1E,∞, and methanol, <img height="21" border="0" style="vertical-align:bottom" width="33" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0378381213006869-si14.gif">H¯2E,∞.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two Liquid crystal-based reflectarrays that operate at 100 GHz and 125 GHz are presented. The first prototype (100 GHz) is used to validate the modeling and the design procedure proposed for this class of antenna. Experimental validation of the beam scanning is carried out by measuring the received power in a quasi-optical test bench, which is able to rotate the receiver in the horizontal plane. These results are used to design a second prototype antenna (125 GHz) which exhibits 2D beam scanning capabilities with a large bandwidth and scanning range that is sufficient for radar and communications applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide were determined as a function of the alkyl chain length on the cation from 1-propyl- to 1-hexyl- from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally the speed of sound, density and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e. relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Korean mondshood root polysaccharides (KMPS) isolated from the root of Aconitum coreanum (Lévl.) Rapaics have shown anti-inflammatory activity, which is strongly influenced by their chemical structures and chain conformations. However, the mechanisms of the anti-inflammatory effect by these polysaccharides have yet to be elucidated. A RG-II polysaccharide (KMPS-2E, Mw 84.8 kDa) was isolated from KMPS and its chemical structure was characterized by FT-IR and NMR spectroscopy, gas chromatography–mass spectrometry and high-performance liquid chromatography. The backbone of KMPS-2E consisted of units of [→6) -β-D-Galp (1→3)-β-L-Rhap-(1→4)-β-D-GalpA-(1→3)-β-D-Galp-(1→] with the side chain →5)-β-D-Arap (1→3, 5)-β-D-Arap (1→ attached to the backbone through O-4 of (1→3,4)-L-Rhap. T-β-D-Galp is attached to the backbone through O-6 of (1→3,6)-β-D-Galp residues and T-β-D-Ara is connected to the end group of each chain. The anti-inflammatory effects of KMPS-2E and the underlying mechanisms using lipopolysaccharide (LPS) - stimulated RAW 264.7 macrophages and carrageenan-induced hind paw edema were investigated. KMPS-2E (50, 100 and 200 µg/mL) inhibits iNOS, TLR4, phospho-NF-κB–p65 expression, phosphor-IKK, phosphor-IκB-α expression as well as the degradation of IκB-α and the gene expression of inflammatory cytokines (TNF-α, IL-1β, iNOS and IL-6) mediated by the NF-κB signal pathways in macrophages. KMPS-2E also inhibited LPS-induced activation of NF-κB as assayed by electrophorectic mobility shift assay (EMSA) in a dose-dependent manner and it reduced NF-κB DNA binding affinity by 62.1% at 200µg/mL. In rats, KMPS-2E (200 mg/kg) can significantly inhibit carrageenan-induced paw edema as ibuprofen (200 mg/kg) within 3 h after a single oral dose. The results indicate that KMPS-2E is a promising herb-derived drug against acute inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today more than 99% of plastics are petroleum-based because of the availability and cost of the raw material. The durability of disposed plastics contributes to the environmental problems as waste and their persistence in the environment causes deleterious effects on the ecosystem. Environmental pollution awareness and the demand for green technology have drawn considerable attention of both academia and industry into biodegradable polymers. In this regard green chemistry technology has the potential to provide solution to this issue. Enzymatic grafting has recently been the focus of green chemistry technologies due to the growing environmental concerns, legal restrictions, and increasing availability of scientific knowledge. Over the last several years, research covering various applications of robust enzymes like laccases and lipases has been increased rapidly, particularly in the field of polymer science, to graft multi-functional materials of interest. In principle, enzyme-assisted grafting may modify/impart a variety of functionalities to the grafted composites which individual materials fail to demonstrate on their own. The modified polymers through grafting have a bright future and their development is practically boundless. In the present study series of graft composites with poly(3-hydroxybutyrate) (P(3HB) as side chain and cellulose as a backbone polymer were successfully synthesised by introducing enzymatic grafting technique where laccase and lipase were used as model catalysts [1-3]. Subsequently, the resulting composites were removed from the casting surface under ambient environment and characterised by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) in detail. Moreover, the thermo-mechanical behaviours of the grafted composites were investigated by differential scanning calorimetry (DSC) and dynamic mechanical analyser (DMA) measurements, respectively. In addition, hydrophobic and hydrophilic characteristics of the grafted polymers were studied through drop contour analysis using water contact angle (WCA). In comparison to the individual counterparts improvement was observed in the thermo- mechanical properties of the composites to varied extent. The tensile strength, elongation at break, and Young’s modulus values of the composites reached their highest levels in comparison to the films prepared with pure P(3HB) only which was too fragile to measure any of the above said characteristics. Interestingly, untreated P(3HB) was hydrophobic in nature and after lipase treatment P(3HB) and P(3HB)-EC-based graft composite attained higher level of hydrophilicity. This is a desired characteristic that enhances the biocompatibility of the materials for proper cell adhesion and proliferation therefore suggesting potential candidates for tissue engineering/bio-medical type applications [3]. The present research will be a first step in the biopolymer modification. To date no report has been found in literature explaining the laccase/lipase assisted grafting of P(3HB) [1-3]. The newly grafted composites exhibit unique functionalities with wider range of potential applications in bio-plastics, pharmaceutical, and cosmetics industries, tissue engineering, and biosensors. [1] H.M.N. Iqbal, G. Kyazze, T. Tron and T. Keshavarz, Cellulose 21, 3613-3621 (2014). [2] H.M.N. Iqbal, G. Kyazze, T. Tron and T. Keshavarz, Carbohydrate Polymers 113, 131-137 (2014). [3] H.M.N. Iqbal, G. Kyazze, T. Tron and T. Keshavarz, Polymer Chemistry In-Press, DOI: 10.1039/C4PY0 0857J (2014).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, we propose a green route to prepare poly(3-hydroxybutyrate) [(P(3HB)] grafted ethyl cellulose (EC) based green composites with novel characteristics through laccase-assisted grafting. P(3HB) was used as a side chain whereas, EC as a backbone material under an ambient processing conditions. A novel laccase obtained from Aspergillus niger through its heterologous expression in Saccharomyces cerevisiae was used as a green catalyst for grafting purposes without the use of additional initiator and/or cross-linking agents. Subsequently, the resulting P(3HB)-g-EC composites were characterized using a range of analytical and imagining techniques. Fourier transform infrared spectroscopy (FT-IR) spectra showed an increase in the hydrogen-bonding type interactions between the side chains of P(3HB) and backbone material of EC. Evidently, X-ray diffraction (XRD) analysis revealed a decrease in the crystallinity of the P(3HB)-g-EC composites as compared to the pristine individual polymers. A homogeneous P(3HB) distribution was also achieved in case of the graft composite prepared in the presence of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as a mediator along with laccase as compared to the composite prepared using pure laccase alone. A substantial improvement in the thermal and mechanical characteristics was observed for grafted composites up to the different extent as compared to the pristine counterparts. The hydrophobic/hydrophilic properties of the grafted composites were better than those of the pristine counterparts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A PGE1 analog, namely (±)-trans-2-(6'-carbomethoxyhexyl)-3- (E-3"-thia-1 "-octene)-4-hydroxycyclopentanone 71, has been prepared for the first time. Towards the synthesis of this compound, several synthetic approaches aimed at the preparation of the required acetylenic and E-halovinylic sulfides as building blocks were investigated. Among all the methods examined, it appeared evident that the best route to ethynyl n.pentyl sulfide 81 is via a double dehydrohalogenation of the corresponding 1,2-dibromoethyl sulfide with sodium amide in liquid ammonia. In addition, the isomerically pure E-2-iodoethenyl n.pentyl sulfide 85 is conveniently prepared in high yield and stereoselectivity by hydrozirconation-iodination of the terminal ethynyl sulfide 81. The classical hydroalumination and hydroboration reactions for the preparation of vinyl halides from alkynes gave only small yields when applied as methods towards the synthesis of 85 . The building block 2-(6'-carbomethoxyhexyl)-4-hydroxy-2- cyclopentenone (±)-1 carrying the upper side-chain of prostaglandin E 1 was prepared by a step-wise synthesis involving transformations of compounds possessing the required carbocyclic framework (see scheme 27). The synthesis proved to be convenient and gave a good overall yield of (±)-1 which was protected as the TH P-derivative 37 or the siloxy derivative 38. With the required building blocks 81 and 37 in hand, the target 1S-thia-PGE1 analog (±)-71 was prepared via the in situ higher cuprate formation-conjugate addition reaction. This method proved to be convenient and stereospecific. The standard cuprate method, involving an organocuprate reagent generated from an isolated vinyl iodide, did not work well in our case and gave a complicated mixture of products. The target compound will be submitted for assessment of bio log ical activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this thesis was to study factors related to the development of Brassica juncea as a sustainable nematicide. Brassica juncea is characterized by the glycoside (glucosinolate) sinigrin. Various methods were developed for the determination of sinigrin in Brassica juncea tissue extracts. Sinigrin concentrations in plant tissues at various stages of growth were monitored. Sinigrin enzymatically breaks down into allylisothiocyanate (AITC). AITC is unstable in aqueous solution and degradation was studied in water and in soil. Finally, the toxicity of AITC against the root-lesion nematode (Pratylenchus penetrans) was determined. A method was developed to extract sinigrin from whole Brassica j uncea tissues. The optimal time of extraction wi th boiling phosphate buffer (0.7mM, pH=6.38) and methanol/water (70:30 v/v) solutions were both 25 minutes. Methanol/water extracted 13% greater amount of sinigrin than phosphate buffer solution. Degradation of sinigrin in boiling phosphate buffer solution (0.13%/minute) was similar to the loss of sinigrin during the extraction procedure. The loss of sinigrin from boiling methanol/water was estimated to be O.Ol%/minute. Brassica juncea extract clean up was accomplished by an ion-pair solid phase extraction (SPE) method. The recovery of sinigrin was 92.6% and coextractive impurities were not detected in the cleaned up extract. Several high performance liquid chromatography (HPLC) methods were developed for the determination of sinigrin. All the developed methods employed an isocratic mobile phase system wi th a low concentration of phosphate buffer solution, ammonium acetate solution or an ion-pair reagent solution. A step gradient system was also developed. The method involved preconditioning the analytical column with phosphate buffer solution and then switching the mobile phase to 100% water after sample injection.Sinigrin and benzyl-glucosinolate were both studied by HPLC particle beam negative chemical ionization mass spectrometry (HPLCPB- NCI-MS). Comparison of the mass spectra revealed the presence of fragments arising from the ~hioglucose moiety and glucosinolate side-chain. Variation in the slnlgrin concentration within Brassica juncea plants was studied (Domo and Cutlass cuItivars). The sinigrin concentration in the top three leaves was studied during growth of each cultivar. For Cutlass, the minimum (200~100~g/g) and maximum (1300~200~g/g) concentrations were observed at the third and seventh week after planting, respectively. For Domo, the minimum (190~70~g/g) and maximum (1100~400~g/g) concentrations were observed at the fourth and eighth week after planting, respectively. The highest sinigrin concentration was observed in flower tissues 2050±90~g/g and 2300±100~g/g for Cutlass and Domo cultivars, respectively. Physical properties of AITC were studied. The solubility of AITC in water was determined to be approximately 1290~g/ml at 24°C. An HPLC method was developed for the separation of degradation compounds from aqueous AITC sample solutions. Some of the degradation compounds identified have not been reported in the literature: allyl-thiourea, allyl-thiocyanate and diallyl-sulfide. In water, AITC degradation to' diallyl-thiourea was favored at basic pH (9.07) and degradation to diallyl-sulfide was favored at acidic pH (4 . 97). It wap necessary to amend the aqueous AITC sample solution with acetonitrile ?efore injection into the HPLC system. The acetonitrile amendment considerably improved AITC recovery and the reproducibility of the results. The half-life of aqueous AITC degradation at room temperature did not follow first-order kinetics. Beginning with a 1084~g/ml solution, the half-life was 633 hours. Wi th an ini tial AITC concentration of 335~g/ml the half-life was 865 hours. At 35°C the half-life AITC was 76+4 hours essentially independent of the iiisolution pH over the range of pH=4.97 to 9.07 (1000~g/ml). AITC degradation was also studied in soil at 35°C; after 24 hours approximately 75% of the initial AITC addition was unrecoverable by water extraction. The ECso of aqueous AITC against the root-lesion nematode (Pratylenchus penetrans) was determined to be approximately 20~g/ml at one hour exposure of the nematode to the test solution. The toxicological study was also performed with a myrosinase treated Brassica juncea extract. Myrosinase treatment of the Brassica juncea extract gave nearly quantitative conversion of sinigrin into AITC. The myrosinase treated extract was of the same efficacy as an aqueous AITC solution of equivalent concentration. The work of this thesis was focused upon understanding parameters relevant to the development of Brassica juncea as a sustainable nematicide. The broad range of experiments were undertaken in support of a research priority at Agriculture and Agri-Food Canada.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the use of an open photoacoustic cell configuration for the evaluation of thermal effusivity of liquid crystals. Initially, the method is calibrated using water and glycerol as transparent liquid samples, and the role of thermal conductivity of these liquids on the photoacoustic signal amplitude is discussed. To demonstrate the application of the present method for the evaluation of thermal effusivity of liquid crystals, we have used certain multicomponent nematic liquid crystal mixtures, namely BL001, BL002, BL032, and BL035. Each of these liquid crystal mixtures contains four to nine components and are primarily based on the cyanobiphenyl structure. The measured values of thermal effusivity of BL001 and BL002 were found to be almost the same, but differ from those of BL032 and BL035, which implies a difference in composition of the latter two from the former two mixtures.