An Ultrasonic Relaxation Study of 1-Alkyl-3-Methylmidazolium-Based Room Temperature Ionic Liquids: Probing the Role of Alkyl Chain Length in the Cation


Autoria(s): Zorębski, Michał; Zorebski, Edward; Dzida, Marzena; Skowronek, Justyna; Jezak, Sylwia; Goodrich, Peter; Jacquemin, Johan
Data(s)

16/03/2016

31/12/1969

Resumo

Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide were determined as a function of the alkyl chain length on the cation from 1-propyl- to 1-hexyl- from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally the speed of sound, density and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e. relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.

Identificador

http://pure.qub.ac.uk/portal/en/publications/an-ultrasonic-relaxation-study-of-1alkyl3methylmidazoliumbased-room-temperature-ionic-liquids-probing-the-role-of-alkyl-chain-length-in-the-cation(efb5959c-c2cf-4187-b5b1-bd158023623e).html

http://dx.doi.org/10.1021/acs.jpcb.5b12635

Idioma(s)

eng

Direitos

info:eu-repo/semantics/embargoedAccess

Fonte

Zorębski , M , Zorebski , E , Dzida , M , Skowronek , J , Jezak , S , Goodrich , P & Jacquemin , J 2016 , ' An Ultrasonic Relaxation Study of 1-Alkyl-3-Methylmidazolium-Based Room Temperature Ionic Liquids: Probing the Role of Alkyl Chain Length in the Cation ' The Journal of Physical Chemistry B . DOI: 10.1021/acs.jpcb.5b12635

Tipo

article