980 resultados para prospect theory
Resumo:
General relativity has very specific predictions for the gravitational waveforms from inspiralling compact binaries obtained using the post-Newtonian (PN) approximation. We investigate the extent to which the measurement of the PN coefficients, possible with the second generation gravitational-wave detectors such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and the third generation gravitational-wave detectors such as the Einstein Telescope (ET), could be used to test post-Newtonian theory and to put bounds on a subclass of parametrized-post-Einstein theories which differ from general relativity in a parametrized sense. We demonstrate this possibility by employing the best inspiralling waveform model for nonspinning compact binaries which is 3.5PN accurate in phase and 3PN in amplitude. Within the class of theories considered, Advanced LIGO can test the theory at 1.5PN and thus the leading tail term. Future observations of stellar mass black hole binaries by ET can test the consistency between the various PN coefficients in the gravitational-wave phasing over the mass range of 11-44M(circle dot). The choice of the lower frequency cutoff is important for testing post-Newtonian theory using the ET. The bias in the test arising from the assumption of nonspinning binaries is indicated.
Resumo:
We obtain the superconformal transformation laws of theN=4 supersymmetric Yang-Mills theory and explicitly demonstrate the closure of the algebra.
Resumo:
Pragmatism has sometimes been taken as a catchphrase for epistemological stances in which anything goes. However, other authors argue that the real novelty and contribution of this tradition has to do with its view of action as the context in which all things human take place. Thus, it is action rather than, for example, discourses that should be our starting point in social theory. The introductory section of the book situates pragmatism (especially the ideas of G. H. Mead and John Dewey) within the field and tradition of social theory. This introductory also contextualizes the main core of the book which consists of four chapters. Two of these chapters have been published as articles in scientific journals and one in an edited book. All of them discuss the core problem of social theory: how is action related to social structures (and vice versa)? The argument is that habitual action is the explanation for the emergence of social structures from our action. Action produces structures and social reproduction takes place when action is habitualized; that is, when we develop social dispositions to act in a certain manner in familiar environments. This also means that even though the physical environment is the same for all of us, our habits structure it into different kinds of action possibilities. Each chapter highlights these general insights from different angles. Practice theory has gained momentum in recent years and it has many commonalities with pragmatism because both highlight the situated and corporeal character of human activity. One famous proponent of practice theory is Margaret Archer who has argued that the pragmatism of G. H. Mead leads to an oversocialized conception of selfhood. Mead does indeed present a socialized view of selfhood but this is a meta-sociological argument rather than a substantial sociological claim. Accordingly, one can argue that in this general sense intersubjectivity precedes subjectivity and not the other way around. Such a view does not indicate that our social relation would necessarily "colonize" individual action because there is a place for internal conversations (in Archer s terminology); it is especially in those phases of action where it meets obstacles due to the changes of the environment. The second issue discussed has the background assumption that social structures can fruitfully be conceptualized as institutions. A general classification of different institution theories is presented and it is argued that there is a need for a habitual theory of institutions due to the problems associated with these other theories. So-called habitual institutionalism accounts for institutions in terms of established and prevalent social dispositions that structure our social interactions. The germs of this institution theory can be found in the work of Thorstein Veblen. Since Veblen s times, these ideas have been discussed for example, by the economist Geoffrey M. Hodgson. His ideas on the evolution of institutions are presented but a critical stance is taken towards his tendency of defining institutions with the help of rules because rules are not always present in institutions. Accordingly, habitual action is the most basic but by no means the only aspect of institutional reproduction. The third chapter deals with theme of action and structures in the context of Pierre Bourdieu s thought. Bourdieu s term habitus refers to a system of dispositions which structure social fields. It is argued that habits come close to the concept of habitus in the sense that the latter consists of particular kinds of habits; those that are related to the reproduction of socioeconomic positions. Habits are thus constituents of a general theory of societal reproduction whereas habitus is a systematic combination of socioeconomic habits. The fourth theme relates to issues of social change and development. The capabilities approach has been associated with the name of Amartya Sen, for example, and it underscores problems inhering in economistic ways of evaluating social development. However, Sen s argument has some theoretical problems. For example, his theory cannot adequately confront the problem of relativism. In addition, Sen s discussion lacks also a theory of the role of the public. With the help of arguments derived from pragmatism, one gets an action-based, socially constituted view of freedom in which the role of the public is essential. In general, it is argued that a socially constituted view of agency does not necessarily to lead to pessimistic conclusions about the freedom of action.
Resumo:
It is pointed out that the complement Clq, associated with the immune response system, has a part containing about 80 residues with a collagen-like sequence, with Gly at every third location and having also a number of Hyp and Hyl residues in locations before Gly, and that it takes the triple-helical conformation characteristic of collagen. As with collagen biosynthesis, ascorbic acid is therefore expected to be required for its production. Also, collagen itself, in the extracellular matrix, is connected with the fibroblast surface protein (FSP), whose absence leads to cell proliferation, and whose addition leads to suppression of malignancy in tissue culture. All these show the great importance of vitamin C for resistance to diseases, and even to cancer, as has been widely advocated by Pauling.
Resumo:
The theory of erosive burning has been constructed front first principles using turbulent boundary layer concepts. It is shown that the problem constitutes one of solution of flame propagation equation for turbulent flow. The final approximate solution for the case of single step overall kinetics reveals the combined effects of fluid mechanics and chemical kinetics. The results obtained from this theory are compared with earlier experimental results. The dependence of erosive burning characteristics on various parameters has been elucidated.
Resumo:
A new approach for describing dislocations and other topological defects in crystals, based on the density wave theory of Ramakrishnan and Yussouff is presented. Quantitative calculations are discussed in brief for the order parameter profiles, the atomic configuration and the free energy of a screw dislocation with Burgers vector b = (a/2, a/2,a/2 ) in a bcc solid. Our results for the free energy of the dislocation in a crystal of sizeR, when expressed as (λb 2/4π) ln (αR/|b|) whereλ is the shear elastic constant, yield, for example, the valueα ⋍ 1·85 for sodium at its freezing temperature (371°K). The density distribution in the presence of the dislocation shows that the dislocation core has a columnar character. To our knowledge, this study represents the first calculation of dislocation structure, including the core, within the framework of an order parameter theory incorporating thermal effects.
Resumo:
System of kinematical conservation laws (KCL) govern evolution of a curve in a plane or a surface in space, even if the curve or the surface has singularities on it. In our recent publication K. R. Arun, P. Prasad, 3-D kinematical conservation laws (KCL): evolution of a surface in R-3-in particular propagation of a nonlinear wavefront, Wave Motion 46 (2009) 293-311] we have developed a mathematical theory to study the successive positions and geometry of a 3-D weakly nonlinear wavefront by adding an energy transport equation to KCL. The 7 x 7 system of equations of this KCL based 3-D weakly nonlinear ray theory (WNLRT) is quite complex and explicit expressions for its two nonzero eigenvalues could not be obtained before. In this short note, we use two different methods: (i) the equivalence of KCL and ray equations and (ii) the transformation of surface coordinates, to derive the same exact expressions for these eigenvalues. The explicit expressions for nonzero eigenvalues are important also for checking stability of any numerical scheme to solve 3-D WNLRT. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In this paper we examine the suitability of higher order shear deformation theory based on cubic inplane displacements and parabolic normal displacements, for stress analysis of laminated composite plates including the interlaminar stresses. An exact solution of a symmetrical four layered infinite strip under static loading has been worked out and the results obtained by the present theory are compared with the exact solution. The present theory provides very good estimates of the deflections, and the inplane stresses and strains. Nevertheless, direct estimates of strains and stresses do not display the required interlaminar stress continuity and strain discontinuity across the interlaminar surface. On the other hand, ‘statically equivalent stresses and strains’ do display the required interlaminar stress continuity and strain discontinuity and agree very closely with the exact solution.
Resumo:
We present a general formalism for deriving bounds on the shape parameters of the weak and electromagnetic form factors using as input correlators calculated from perturbative QCD, and exploiting analyticity and unitarily. The values resulting from the symmetries of QCD at low energies or from lattice calculations at special points inside the analyticity domain can be included in an exact way. We write down the general solution of the corresponding Meiman problem for an arbitrary number of interior constraints and the integral equations that allow one to include the phase of the form factor along a part of the unitarity cut. A formalism that includes the phase and some information on the modulus along a part of the cut is also given. For illustration we present constraints on the slope and curvature of the K-l3 scalar form factor and discuss our findings in some detail. The techniques are useful for checking the consistency of various inputs and for controlling the parameterizations of the form factors entering precision predictions in flavor physics.
Resumo:
The migrating electrons in biological systems normally are extraneous and taking this into account the electron delocalisation across the hydrogen bonds in proteins is re-examined. It is seen that an extraneous electron can travel rapidly via the low-lying virtual orbitals of the hydrogen-bonded π-electronic structure of peptide units in proteins. The frequency of electron transfer decreases slowly with an increase in the path length. However, the coupling of electron and protonic motions enhances this frequency. Transfer of electrons across the hydrogen bonds in accordance with the double-exchange mechanism does not appear to be possible. This theory offers a possibility for an extraneous electron to transfer within protein structures.
Resumo:
In the thesis I study various quantum coherence phenomena and create some of the foundations for a systematic coherence theory. So far, the approach to quantum coherence in science has been purely phenomenological. In my thesis I try to answer the question what quantum coherence is and how it should be approached within the framework of physics, the metatheory of physics and the terminology related to them. It is worth noticing that quantum coherence is a conserved quantity that can be exactly defined. I propose a way to define quantum coherence mathematically from the density matrix of the system. Degenerate quantum gases, i.e., Bose condensates and ultracold Fermi systems, form a good laboratory to study coherence, since their entropy is small and coherence is large, and thus they possess strong coherence phenomena. Concerning coherence phenomena in degenerate quantum gases, I concentrate in my thesis mainly on collective association from atoms to molecules, Rabi oscillations and decoherence. It appears that collective association and oscillations do not depend on the spin-statistics of particles. Moreover, I study the logical features of decoherence in closed systems via a simple spin-model. I argue that decoherence is a valid concept also in systems with a possibility to experience recoherence, i.e., Poincaré recurrences. Metatheoretically this is a remarkable result, since it justifies quantum cosmology: to study the whole universe (i.e., physical reality) purely quantum physically is meaningful and valid science, in which decoherence explains why the quantum physical universe appears to cosmologists and other scientists very classical-like. The study of the logical structure of closed systems also reveals that complex enough closed (physical) systems obey a principle that is similar to Gödel's incompleteness theorem of logic. According to the theorem it is impossible to describe completely a closed system within the system, and the inside and outside descriptions of the system can be remarkably different. Via understanding this feature it may be possible to comprehend coarse-graining better and to define uniquely the mutual entanglement of quantum systems.