946 resultados para major gene
Resumo:
Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of diseases. Since the first isolation of C. pneumoniae TWAR in 1965, all human isolates have been essentially clonal, providing little evolutionary insight. To address this gap, we investigated the genetic diversity of 30 isolates from diverse geographical locations, from both human and animal origin (amphibian, reptilian, equine and marsupial). Based on the level of variation that we observed at 23 discreet gene loci, it was clearly evident that the animal isolates were more diverse than the isolates of human origin. Furthermore, we show that C. pneumoniae isolates could be grouped into five major genotypes, A-E, with A, B, D and E genotypes linked by geographical location, whereas genotype C was found across multiple continents. Our evidence strongly supports two separate animal-to-human cross species transfer events in the evolutionary history of this pathogen. The C. pneumoniae human genotype identified in the USA, Canada, Taiwan, Iran, Japan, Korea and Australia (non- Indigenous) most likely originated from a single amphibian or reptilian lineage, which appears to have been previously geographically widespread. We identified a separate human lineage present in two Australian Indigenous isolates (independent geographical locations). This lineage is distinct and is present in Australian amphibians as well as a range of Australian marsupials.
Resumo:
Background A number of studies have found associations between dysbindin (DTNBP1) polymorphisms and schizophrenia. Recently we identified a DTNBP1 SNP (rs9370822) that is strongly associated with schizophrenia. Individuals diagnosed with schizophrenia were nearly three times as likely to carry the CC genotype compared to the AA genotype. Methods To investigate the importance of this SNP in the function of DTNBP1, a number of psychiatric conditions including addictive behaviours and anxiety disorders were analysed for association with rs9370822. Results The DTNBP1 polymorphism was significantly associated with post-traumatic stress disorder (PTSD) as well as nicotine and opiate dependence but not alcohol dependence. Individuals suffering PTSD were more than three times as likely to carry the CC genotype compared to the AA genotype. Individuals with nicotine or opiate dependence were more than twice as likely to carry the CC genotype compared to the AA genotype. Conclusions This study provides further support for the importance of DTNBP1 in psychiatric conditions and suggests that there is a common underlying molecular defect involving DTNBP1 that contributes to the development of several anxiety and addictive disorders that are generally recognised as separate clinical conditions. These disorders may actually be different expressions of a single metabolic pathway perturbation. As our participant numbers are limited our observations should be viewed with caution until they are independently replicated.
Resumo:
PROBLEM Chlamydia trachomatis is a significant worldwide health problem, and the often-asymptomatic disease can result in infertility. To develop a successful vaccine, a complete understanding of the immune response to chlamydial infection and development of genital tract pathology is required. METHOD OF STUDY We utilized the murine genital model of chlamydial infection. Mice were immunized with chlamydial major outer membrane protein, and vaginal lavage was assessed for the presence of neutralizing antibodies. These samples were then pre-incubated with Chlamydia muridarum and administered to the vaginal vaults of immune-competent female BALB/c mice to determine the effect on infection. RESULTS The administration of C. muridarum in conjunction with neutralizing antibodies reduced the numbers of mice infected, but a surprising finding was that this accelerated the development of severe oviduct pathology. CONCLUSION Antibodies play an under-recognized role in chlamydial infection and pathology development, which possibly involves interaction with Th1 immunity.
Resumo:
Ureaplasma species are the bacteria most frequently isolated from human amniotic fluid in asymptomatic pregnancies and placental infections. Ureaplasma parvum serovars 3 and 6 are the most prevalent serovars isolated from men and women. We hypothesized that the effects on the fetus and chorioamnion of chronic ureaplasma infection in amniotic fluid are dependent on the serovar, dose, and variation of the ureaplasma multiple banded antigen (MBA) and mba gene. We injected high- or low dose U. parvum serovar 3, serovar 6, or vehicle intra-amniotically into pregnant ewes at 55 days of gestation (term = 150 days) and examined the chorioamnion, amniotic fluid, and fetal lung tissue of animals delivered by cesarean section at 125 days of gestation. Variation of the multiple banded antigen/mba generated by serovar 3 and serovar 6 ureaplasmas in vivo were compared by PCR assay and Western blot. Ureaplasma inoculums demonstrated only one (serovar 3) or two (serovar 6) MBA variants in vitro, but numerous antigenic variants were generated in vivo: serovar 6 passage 1 amniotic fluid cultures contained more MBA size variants than serovar 3 (P = 0.005),and ureaplasma titers were inversely related to the number of variants (P = 0.025). The severity of chorioamnionitis varied between animals. Low numbers of mba size variants (five or fewer) within amniotic fluid were associated with severe inflammation, whereas the chorioamnion from animals with nine or more mba variants showed little or no inflammation. These differences in chorioamnion inflammation may explain why not all women with in utero Ureaplasma spp. experience adverse pregnancy outcomes.
Resumo:
Cell based therapies as they apply to tissue engineering and regenerative medicine, require cells capable of self renewal and differentiation, and a prerequisite is to be able to prepare an effective dose of ex vivo expanded cells for autologous transplants. The in vivo identification of a source of physiologically relevant cell types suitable for cell therapies therefore figures as an integral part of tissue engineering. Stem cells serve as a reserve for biological repair, having the potential to differentiate into a number of specialised cell types within the body; they therefore represent the most useful candidates for cell based therapies. The primary goal of stem cell research is to produce cells that are both patient specific, as well as having properties suitable for the specific conditions for which they are intended to remedy. From a purely scientific perspective, stem cells allow scientists to gain a deeper understanding of developmental biology and regenerative therapies. Stem cells have acquired a number of uses for applications in regenerative medicine, immunotherapy, gene therapy, but it is in the area of tissue engineering that they generate most excitement, primarily as a result of their capacity for self-renewal and pluripotency. A unique feature of stem cells is their ability to maintain an uncommitted quiescent state in vivo and then, once triggered by conditions such as disease, injury or natural wear or tear, serve as a reservoir and natural support system to replenish lost cells. Although these cells retain the plasticity to differentiate into various tissues, being able to control this differentiation process is still one of the biggest challenges facing stem cell research. In an effort to harness the potential of these cells a number of studies have been conducted using both embryonic/foetal and adult stem cells. The use of embryonic stem cells (ESC) have been hampered by strong ethical and political concerns, this despite their perceived versatility due to their pluripotency. Ethical issues aside, other concerns raised with ESCs relates to the possibility of tumorigenesis, immune rejection and complications with immunosuppressive therapies, all of which adds layers of complications to the application ESC in research and which has led to the search for alternative sources for stem cells. The adult tissues in higher organisms harbours cells, termed adult stem cells, and these cells are reminiscent of unprogrammed stem cells. A number of sources of adult stem cells have been described. Bone marrow is by far the most accessible source of two potent populations of adult stem cells, namely haematopoietic stem cells (HSCs) and bone marrow mesenchymal stem cells (BMSCs). Autologously harvested adult stem cells can, in contrast to embryonic stem cells, readily be used in autografts, since immune rejection is not an issue; and their use in scientific research has not attracted the ethical concerns which have been the case with embryonic stem cells. The major limitation to their use, however, is the fact that adult stem cells are exceedingly rare in most tissues. This fact makes identifying and isolating these cells problematic; bone marrow being perhaps the only notable exception. Unlike the case of HSCs, there are as yet no rigorous criteria for characterizing MSCs. Changing acuity about the pluripotency of MSCs in recent studies has expanded their potential application; however, the underlying molecular pathways which impart the features distinctive to MSCs remain elusive. Furthermore, the sparse in vivo distribution of these cells imposes a clear limitation to their study in vitro. Also, when MSCs are cultured in vitro, there is a loss of the in vivo microenvironment, resulting in a progressive decline in proliferation potential and multipotentiality. This is further exacerbated with increased passage numbers in culture, characterized by the onset of senescence related changes. As a consequence, it is necessary to establish protocols for generating large numbers of MSCs but without affecting their differentiation potential. MSCs are capable of differentiating into mesenchymal tissue lineages, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Recent findings indicate that adult bone marrow may also contain cells that can differentiate into the mature, nonhematopoietic cells of a number of tissues, including cells of the liver, kidney, lung, skin, gastrointestinal tract, and myocytes of heart and skeletal muscle. MSCs can readily be expanded in vitro and can be genetically modified by viral vectors and be induced to differentiate into specific cell lineages by changing the microenvironment–properties which makes these cells ideal vehicles for cellular gene therapy. MSCs can also exert profound immunosuppressive effects via modulation of both cellular and innate immune pathways, and this property allows them to overcome the issue of immune rejection. Despite the many attractive features associated with MSCs, there are still many hurdles to overcome before these cells are readily available for use in clinical applications. The main concern relates to in vivo characterization and identification of MSCs. The lack of a universal biomarker, sparse in vivo distribution, and a steady age related decline in their numbers, makes it an obvious need to decipher the reprogramming pathways and critical molecular players which govern the characteristics unique to MSCs. This book presents a comprehensive insight into the biology of adult stem cells and their utility in current regeneration therapies. The adult stem cell populations reviewed in this book include bone marrow derived MSCs, adipose derived stem cells (ASCs), umbilical cord blood stem cells, and placental stem cells. The features such as MSC circulation and trafficking, neuroprotective properties, and the nurturing roles and differentiation potential of multiple lineages have been discussed in details. In terms of therapeutic applications, the strengths of MSCs have been presented and their roles in disease treatments such as osteoarthritis, Huntington’s disease, periodontal regeneration, and pancreatic islet transplantation have been discussed. An analysis comparing osteoblast differentiation of umbilical cord blood stem cells and MSCs has been reviewed, as has a comparison of human placental stem cells and ASCs, in terms of isolation, identification and therapeutic applications of ASC in bone, cartilage regeneration, as well as myocardial regeneration. It is my sincere hope that this book will update the reader as to the research progress of MSC biology and potential use of these cells in clinical applications. It will be the best reward to all contributors of this book, if their efforts herein may in some way help the readers in any part of their study, research, and career development.
Resumo:
Background This economic evaluation reports the results of a detailed study of the cost of major trauma treated at Princess Alexandra Hospital (PAH), Australia. Methods A bottom-up approach was used to collect and aggregate the direct and indirect costs generated by a sample of 30 inpatients treated for major trauma at PAH in 2004. Major trauma was defined as an admission for Multiple Significant Trauma with an Injury Severity Score >15. Direct and indirect costs were amalgamated from three sources, (1) PAH inpatient costs, (2) Medicare Australia, and (3) a survey instrument. Inpatient costs included the initial episode of inpatient care including clinical and outpatient services and any subsequent representations for ongoing-related medical treatment. Medicare Australia provided an itemized list of pharmaceutical and ambulatory goods and services. The survey instrument collected out-of-pocket expenses and opportunity cost of employment forgone. Inpatient data obtained from a publically funded trauma registry were used to control for any potential bias in our sample. Costs are reported in Australian dollars for 2004 and 2008. Results The average direct and indirect costs of major trauma incurred up to 1-year postdischarge were estimated to be A$78,577 and A$24,273, respectively. The aggregate costs, for the State of Queensland, were estimated to range from A$86.1 million to $106.4 million in 2004 and from A$135 million to A$166.4 million in 2008. Conclusion These results demonstrate that (1) the costs of major trauma are significantly higher than previously reported estimates and (2) the cost of readmissions increased inpatient costs by 38.1%.
The ratio of VEGF/PEDF expression in bone marrow mesenchymal stem cells regulates neovascularization
Resumo:
Angiogenesis, or neovascularization, is a finely balanced process controlled by pro- and anti-angiogenic factors. Vascular endothelial growth factor (VEGF) is a major pro-angiogenic factor, whereas pigment epithelial-derived factor (PEDF) is the most potent natural angiogenesis inhibitor. In this study, the regulatory role of bone marrow stromal cells (BMSCs) during angiogenesis was assessed by the endothelial differentiation potential, VEGF/PEDF production and responses to pro-angiogenic and hypoxic conditions. The in vivo regulation of blood vessel formation by BMSCs was also explored in a SCID mouse model. Results showed that PEDF was expressed more prominently in BMSCs compared to VEGF. This contrasted with human umbilical vein endothelial cells (HUVECs) where the expression of VEGF was higher than that of PEDF. The ratio of VEGF/PEDF gene expression in BMSCs increased when VEGF concentration reached 40 ng/ml in the culture medium, but decreased at 80 ng/ml. Under CoCl2- induced hypoxic conditions, the VEGF/PEDF ratio of BMSCs increased significantly in both normal and angiogenic culture media. There was no expression of endothelial cell markers in BMSCs cultured in either pro-angiogenic or hypoxia culture conditions when compared with HUVECs. The in vivo study showed that VEGF/PEDF expression closely correlated with the degree of neovascularization, and that hypoxia significantly induced pro-angiogenic activity in BMSCs. These results indicate that, rather than being progenitors of endothelial cells, BMSCs play an important role in regulating the neovascularization process, and that the ratio of VEGF and PEDF may, in effect, be an indicator of the pro- or antiangiogenic activities of BMSCs.
Resumo:
The molecular mechanism between atherosclerosis formation and periodontal pathogens is not clear although positive correlation between periodontal infections and cardiovascular diseases has been reported. Objective: To determine if atherosclerosis related genes were affected in foam cells during and after its formation by P. gingivalis lipopolysaccharide (LPS) stimulation. Methods: Macrophages from human THP-1 monocytes were treated with oxidized low density lipoprotein (oxLDL) to induce the formation of foam cells. P. gingivalis LPS was added to cultures of either oxLDL-induced macrophages or foam cells. The expression of atherosclerosis related genes was assayed by quantitative real time PCR and the protein production of granulocyte-macrophage colony-stimulating factor(GM-CSF), monocyte chemotactic protein-1 (MCP-1), IL-1β, IL-10 and IL-12 was determined by ELISA. Nuclear translocation of NF-κB P65 was detected by immunocytochemistry and western blot was used to evaluate IKB-α degradation to confirm the NF-κB pathway activation. Results: P. gingivalis LPS stimulated atherosclerosis related gene expression in foam cells and increased oxLDL induced expression of chemokines, adhesion molecules, growth factors, apoptotic genes, and nuclear receptors in macrophages. Transcription of the pro-inflammatory cytokines IL-1β and IL-12 was elevated in response to LPS in both macrophages and foam cells, whereas the anti-inflammatory cytokine IL-10 was not affected. Increased NF-κB pathway activation was also observed in LPS and oxLDL co-stimulated macrophages. Conclusion: P. gingivalis LPS appears to be an important factor in the development of atherosclerosis by stimulation of atherosclerosis related gene expression in both macrophages and foam cells via activation of the NF-κB pathway.
Resumo:
Emergence and dissemination of community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) strains are being reported with increasing frequency in Australia and worldwide. These strains of CA-MRSA are genetically diverse and distinct in Australia. Genotyping of CA-MRSA using eight highly-discriminatory single nucleotide polymorphisms (SNPs) is a rapid and robust method for monitoring the dissemination of these strains in the community. In this study, a SNP genotyping method was used to investigate the molecular epidemiology of 249 community acquired non-multiresistant MRSA (nm-MRSA) isolates over a 12-month period from routine diagnostic specimens. A real-time PCR for the presence of Panton-Valentine leukocidin (PVL) was also performed on these isolates. The CA-MRSA isolates were sourced from a large private laboratory in Brisbane, Australia that serves a wide geographic region encompassing Queensland and Northern New South Wales. This study identified 16 different STs and 98% of the CA-MRSA isolates were positive for the PVL gene. The most common ST was ST93 with 41% of isolates testing positive for this clone.
Resumo:
Introduction and aims: For a scaffold material to be considered effective and efficient for tissue engineering it must be biocompatible as well as bioinductive. Silk fiber is a natural biocompatible material suitable for scaffold fabrication; however, silk is tissue-conductive and lacks tissue-inductive properties. One proposed method to make the scaffold tissue-inductive is to introduce plasmids or viruses encoding a specific growth factor into the scaffold. In this study, we constructed adenoviruses encoding bone morphogenetic protein-7 (BMP-7) and incorporated these into silk scaffolds. The osteo-inductive and new bone formation properties of these constructs were assessed in vivo in a critical-sized skull defect animal model. Materials and methods: Silk fibroin scaffolds containing adenovirus particles coding BMP-7 were prepared. The release of the adenovirus particles from the scaffolds was quantified by tissue-culture infective dose (TCID50) and the bioactivity of the released viruses was evaluated on human bone marrow mesenchymal stromal cells (BMSCs). To demonstrate the in vivo bone forming ability of the virus-carrying silk fibroin scaffold, the scaffold constructs were implanted into calvarial defects in SCID mice. Results: In vitro studies demonstrated that the virus-carrying silk fibroin scaffold released virus particles over a 3 week period while preserving their bioactivity. In vivo test of the scaffold constructs in critical-sized skull defect areas revealed that silk scaffolds were capable of delivering the adenovirus encoding BMP-7, resulting significantly enhanced new bone formation. Conclusions: Silk scaffolds carrying BMP-7 encoding adenoviruses can effectively transfect cells and enhance both in vitro and in vivo osteogenesis. The findings of this study indicate silk fibroin is a promising biomaterial for gene delivery to repair critical-sized bone defects.
Resumo:
Genomic and proteomic analyses have attracted a great deal of interests in biological research in recent years. Many methods have been applied to discover useful information contained in the enormous databases of genomic sequences and amino acid sequences. The results of these investigations inspire further research in biological fields in return. These biological sequences, which may be considered as multiscale sequences, have some specific features which need further efforts to characterise using more refined methods. This project aims to study some of these biological challenges with multiscale analysis methods and stochastic modelling approach. The first part of the thesis aims to cluster some unknown proteins, and classify their families as well as their structural classes. A development in proteomic analysis is concerned with the determination of protein functions. The first step in this development is to classify proteins and predict their families. This motives us to study some unknown proteins from specific families, and to cluster them into families and structural classes. We select a large number of proteins from the same families or superfamilies, and link them to simulate some unknown large proteins from these families. We use multifractal analysis and the wavelet method to capture the characteristics of these linked proteins. The simulation results show that the method is valid for the classification of large proteins. The second part of the thesis aims to explore the relationship of proteins based on a layered comparison with their components. Many methods are based on homology of proteins because the resemblance at the protein sequence level normally indicates the similarity of functions and structures. However, some proteins may have similar functions with low sequential identity. We consider protein sequences at detail level to investigate the problem of comparison of proteins. The comparison is based on the empirical mode decomposition (EMD), and protein sequences are detected with the intrinsic mode functions. A measure of similarity is introduced with a new cross-correlation formula. The similarity results show that the EMD is useful for detection of functional relationships of proteins. The third part of the thesis aims to investigate the transcriptional regulatory network of yeast cell cycle via stochastic differential equations. As the investigation of genome-wide gene expressions has become a focus in genomic analysis, researchers have tried to understand the mechanisms of the yeast genome for many years. How cells control gene expressions still needs further investigation. We use a stochastic differential equation to model the expression profile of a target gene. We modify the model with a Gaussian membership function. For each target gene, a transcriptional rate is obtained, and the estimated transcriptional rate is also calculated with the information from five possible transcriptional regulators. Some regulators of these target genes are verified with the related references. With these results, we construct a transcriptional regulatory network for the genes from the yeast Saccharomyces cerevisiae. The construction of transcriptional regulatory network is useful for detecting more mechanisms of the yeast cell cycle.
Resumo:
Obestatin is a 23 amino acid, ghrelin gene-derived peptide hormone produced in the stomach and a range of other tissues throughout the body. While it was initially reported that obestatin opposed the actions of ghrelin with regards to appetite and food intake, it is now clear that obestatin is not an endogenous ghrelin antagonist of ghrelin, but it is a multi-functional peptide hormone in its own right. In this review we will discuss the controversies associated with the discovery of obestatin and explore emerging central and peripheral roles of obestatin, roles in adipogenesis, pancreatic homeostasis and cancer.
Resumo:
In humans, more than 30,000 chimeric transcripts originating from 23,686 genes have been identified. The mechanisms and association of chimeric transcripts arising from chromosomal rearrangements with cancer are well established, but much remains unknown regarding the biogenesis and importance of other chimeric transcripts that arise from nongenomic alterations. Recently, a SLC45A3–ELK4 chimera has been shown to be androgen-regulated, and is overexpressed in metastatic or high-grade prostate tumors relative to local prostate cancers. Here, we characterize the expression of a KLK4 cis sense–antisense chimeric transcript, and show other examples in prostate cancer. Using non-protein-coding microarray analyses, we initially identified an androgen-regulated antisense transcript within the 3′ untranslated region of the KLK4 gene in LNCaP cells. The KLK4 cis-NAT was validated by strand-specific linker-mediated RT-PCR and Northern blotting. Characterization of the KLK4 cis-NAT by 5′ and 3′ rapid amplification of cDNA ends (RACE) revealed that this transcript forms multiple fusions with the KLK4 sense transcript. Lack of KLK4 antisense promoter activity using reporter assays suggests that these transcripts are unlikely to arise from a trans-splicing mechanism. 5′ RACE and analyses of deep sequencing data from LNCaP cells treated ±androgens revealed six high-confidence sense–antisense chimeras of which three were supported by the cDNA databases. In this study, we have shown complex gene expression at the KLK4 locus that might be a hallmark of cis sense–antisense chimeric transcription.
Resumo:
Abstract This study investigated depressive symptom and interpersonal relatedness outcomes from eight sessions of manualized narrative therapy for 47 adults with major depressive disorder. Post-therapy, depressive symptom improvement (d=1.36) and proportions of clients achieving reliable improvement (74%), movement to the functional population (61%), and clinically significant improvement (53%) were comparable to benchmark research outcomes. Post-therapy interpersonal relatedness improvement (d=.62) was less substantial than for symptoms. Three-month follow-up found maintenance of symptom, but not interpersonal gains. Benchmarking and clinical significance analyses mitigated repeated measure design limitations, providing empirical evidence to support narrative therapy for adults with major depressive disorder. RÉSUMÉ Cette étude a investigué les symptômes dépressifs et les relations interpersonnels d'une thérapie narrative en huit séances chez 47 adultes souffrant d'un trouble dépressif majeur. Après la thérapie, l'amélioration des symptômes dépressifs (d=1.36) et la proportion de clients atteignant un changement significatif (74%), le mouvement vers la population fonctionnelle (61%), enfin l'amélioration clinique significative (53%) étaient comparables aux performances des études de résultats. L'amélioration des relations interpersonnelles (d=0.62) était inférieure à l'amélioration symptomatique. Le suivi à trois mois montrait un maintien des gains symptomatiques mais pas pour les relations interpersonnelles. L’évaluation des performances et les analyses de significativité clinique modèrent les limitations du plan de recherche à mesures répétées et apportent une preuve empirique qui étaie l'efficacité des thérapies narratives pour des adultes avec un trouble dépressif majeur. Este estudo investigou sintomas depressivos e resultados interpessoais relacionados em oito sessões de terapia narrativa manualizada para 47 adultos com perturbação depressiva major. No pós terapia, melhoria de sintomas depressivos (d=1,36) e proporção de clientes que alcançam melhoria válida (74%), movimento para a população funcional (61%) e melhoria clinicamente significativa (53%) foram comparáveis com os resultados da investigação reportados. As melhorias pós terapia nos resultados interpessoais relacionados (d=.62) foi menos substancial do que para os sintomas. Aos três meses de seguimento houve a manutenção dos sintomas mas não dos ganhos interpessoais. As análises de benchemarking e de melhoria clinicamente significativas atenuam as limitações de um design de medidas repetidas, fornecendo evidência empírica para a terapia narrativa para adultos com perturbação depressiva major. Questo lavoro ha valutato i sintomi depressivi e gli outcome nella capacità di relazionarsi a livello interpersonale in 8 sedute di psicoterapia narrativa manualizzata in un gruppo di 47 adulti con depressione maggiore. I risultati ottenuti relativamente a: post terapy, miglioramento dei sintomi depressivi (d_1.36), proporzione di pazienti che hanno raggiunto un miglioramento affidabile e consistente (74%), movimento verso il funzionamento atteso nella popolazione (61%) e miglioramento clinicamente significativo (53%) sono paragonabili ai valori di riferimento della ricerca sull'outcome. I miglioramento della capacità di relazionarsi valutata alla fine del trattamento (d_.62) si è rivelata meno sostanziale rispetto ai sintomi. Un follow-up dopo 3 mesi ha dimostrato che il miglioramento sintomatologico è stato mantenuto, ma non quello degli obiettivi interpersonali. Valori di riferimento e analisi della significatività clinica hanno fatto fronte ai limiti del disegno a misure ripetute, offrendo prove empiriche sulla rilevanza della terapia narrativa in pazienti adulti con depressione maggiore