982 resultados para hla cw6 antigen
Resumo:
MHC-peptide tetramers have become essential tools for T-cell analysis, but few MHC class II tetramers incorporating peptides from human tumor and self-antigens have been developed. Among limiting factors are the high polymorphism of class II molecules and the low binding capacity of the peptides. Here, we report the generation of molecularly defined tetramers using His-tagged peptides and isolation of folded MHC/peptide monomers by affinity purification. Using this strategy we generated tetramers of DR52b (DRB3*0202), an allele expressed by approximately half of Caucasians, incorporating an epitope from the tumor antigen NY-ESO-1. Molecularly defined tetramers avidly and stably bound to specific CD4(+) T cells with negligible background on nonspecific cells. Using molecularly defined DR52b/NY-ESO-1 tetramers, we could demonstrate that in DR52b(+) cancer patients immunized with a recombinant NY-ESO-1 vaccine, vaccine-induced tetramer-positive cells represent ex vivo in average 1:5,000 circulating CD4(+) T cells, include central and transitional memory polyfunctional populations, and do not include CD4(+)CD25(+)CD127(-) regulatory T cells. This approach may significantly accelerate the development of reliable MHC class II tetramers to monitor immune responses to tumor and self-antigens.
Resumo:
In ecology, "disease tolerance" is defined as an evolutionary strategy of hosts against pathogens, characterized by reduced or absent pathogenesis despite high pathogen load. To our knowledge, tolerance has to date not been quantified and disentangled from host resistance to disease in any clinically relevant human infection. Using data from the Swiss HIV Cohort Study, we investigated if there is variation in tolerance to HIV in humans and if this variation is associated with polymorphisms in the human genome. In particular, we tested for associations between tolerance and alleles of the Human Leukocyte Antigen (HLA) genes, the CC chemokine receptor 5 (CCR5), the age at which individuals were infected, and their sex. We found that HLA-B alleles associated with better HIV control do not confer tolerance. The slower disease progression associated with these alleles can be fully attributed to the extent of viral load reduction in carriers. However, we observed that tolerance significantly varies across HLA-B genotypes with a relative standard deviation of 34%. Furthermore, we found that HLA-B homozygotes are less tolerant than heterozygotes. Lastly, tolerance was observed to decrease with age, resulting in a 1.7-fold difference in disease progression between 20 and 60-y-old individuals with the same viral load. Thus, disease tolerance is a feature of infection with HIV, and the identification of the mechanisms involved may pave the way to a better understanding of pathogenesis.
Resumo:
Abstract: Purpose: NY-ESO-1 (ESO), a tumor-specific antigen of the cancer/testis group, is presently viewed as an important model antigen for the development of generic anticancer vaccines. The ESO119-143 region is immunodominant following immunization with a recombinant ESO vaccine. In this study, we generated DRB1*0101/ESO119-143 tetramers and used them to assess CD4 T-cell responses in vaccinated patients expressing DRB1*0101 (DR1). Experimental Design: We generated tetramers of DRB1*0101 incorporating peptide ESO119-143 using a previously described strategy. We assessed ESO119-143-specific CD4 T cells in peptide-stimulated post-vaccine cultures using the tetramers. We isolated DR1/ESO119-143 tetramer(+) cells by cell sorting and characterized them functionally. We assessed vaccine-induced CD4(+) DR1/ESO119-143 tetramer(+) T cells ex vivo and characterized them phenotypically. Results: Staining of cultures from vaccinated patients with DR1/ESO119-143 tetramers identified vaccine-induced CD4 T cells. Tetramer(+) cells isolated by cell sorting were of T(H)1 type and efficiently recognized full-length ESO. We identified ESO123-137 as the minimal optimal epitope recognized by DR1-restricted ESO-specific CD4 T cells. By assessing DR1/ESO119-143 tetramer(+) cells using T cell receptor (TCR) beta chain variable region (V beta)-specific antibodies, we identified several frequently used V beta. Finally, direct ex vivo staining of patients' CD4 T cells with tetramers allowed the direct quantification and phenotyping of vaccine-induced ESO-specific CD4 T cells. Conclusions: The development of DR1/ESO119-143 tetramers, allowing the direct visualization, isolation, and characterization of ESO-specific CD4 T cells, will be instrumental for the evaluation of spontaneous and vaccine-induced immune responses to this important tumor antigen in DR1-expressing patients
Resumo:
OBJECTIVE: To investigate the merits of vaccination against hepatitis B virus (HBV) in HIV-positive individuals with isolated antibodies to hepatitis B core antigen (anti-HBc). METHODS: HIV-positive patients with isolated anti-HBc and CD4 counts >200 cells/mm(3) received HBV vaccination. An antibody titre to hepatitis B surface antigen (anti-HBs titres) ≥10 IU/L one month post-vaccination was termed an anamnestic response; a titre <10 IU/L was termed a primary response. Patients with primary responses received a 3-dose vaccine course. Anti-HBs titres in all responders were measured 12 and 24 months post-vaccination. RESULTS: 37 patients were studied: 19 (51%) were co-infected with hepatitis C; median CD4 count was 443 cells/mm(3). 8/37 patients (22%) elicited an anamnestic response. 29/37 patients (78%) elicited a primary response. After a 3-dose vaccine course, 15/25 primary responders (60%) achieved anti-HBs titres ≥10 IU/L. HIV acquisition through injecting drug use was the only independent predictor of an anamnestic response (OR 22.9, CI 1.71-306.74, P=0.018). Median anti-HBs titres for anamnestic and primary responders were 51 IU/L (13-127) and 157 IU/L (25-650) respectively. Of all responders, 12/23 (52%) retained anti-HBs titres ≥10 IU/L at 24 months. Anti-HBs duration was not significantly different between anamnestic and primary responders. CONCLUSIONS: 23/37 HIV-positive patients (62%) with isolated anti-HBc achieved anti-HBs titres ≥10 IU/L after 1-3 vaccine doses. However, duration of this immune response was short-lived (
Resumo:
While the influence of HLA-AB and -DRB1 matching on the outcome of bone marrow transplantation (BMT) with unrelated donors is clear, the evaluation of HLA-C has been hampered by its poor serological definition. Because the low resolution of standard HLA-C typing could explain the significant number of positive cytotoxic T lymphocyte precursor frequency (CTLpf) tests found among HLA-AB-subtype, DRB1/B3/B5-subtype matched patient/donor pairs, we have identified by sequencing the incompatibilities recognized by CD8+ CTL clones obtained from such positive CTLpf tests. In most cases the target molecules were HLA-C antigens that had escaped detection by serology (e.g. Cw*1601, 1502 or 0702). Direct recognition of HLA-C by a CTL clone was demonstrated by lysis of the HLA class I-negative 721.221 cell line transfected with Cw*1601 cDNA. Because of the functional importance of Cw polymorphism, a PCR-SSO oligotyping procedure was set up allowing the resolution of 29 Cw alleles. Oligotyping of a panel of 382 individuals (including 101 patients and their 272 potential unrelated donors, 5 related donors and 4 platelet donors) allowed to determine HLA-C and HLA A-B-Cw-DRB1 allelic frequencies, as well as a number of A-Cw, B-Cw, and DRB1-Cw associations. Two new HLA-Cw alleles (Cw*02023 and Cw*0707) were identified by DNA sequencing of PCR-amplified exon 2-intron 2-exon 3 amplicons. Furthermore, we determined the degree of HLA-C compatibility in 287 matched pairs that could be formed from 73 patients and their 184 potential unrelated donors compatible for HLA-AB by serology and for HLA-DRB1/ B3/B5 by oligotyping. Cw mismatches were identified in 42.1% of these pairs, and AB-subtype oligotyping showed that 30% of these Cw-incompatible pairs were also mismatched for A or B-locus subtype. The degree of HLA-C incompatibility was strongly influenced by the linkage with B alleles and by the ABDR haplotypes. Cw alleles linked with B*4403, B*5101, B18, and B62 haplotypes were frequently mismatched. Apparently high resolution DNA typing for HLA-AB does not result in full matching at locus C. Since HLA-C polymorphism is recognized by alloreactive CTLs, such incompatibilities might be as relevant as AB-subtype mismatches in clinical transplantation.
Resumo:
Carcinoembryonic antigen (CEA) has been shown to be one of the best markers for in vivo tumor targeting of radiolabeled antibodies, despite the fact that it is localized predominantly at the apical side of human colon carcinoma cells within the fairly closed pseudolumen structures formed by these tumors. Due to this particular histological localization, a large proportion of the CEA molecules may remain inaccessible to the intravenously injected radiolabeled anti-CEA antibodies of IgG isotype, which are widely used in the clinic. In order to improve targeting, we made a recombinant dimeric IgA, which should have the capacity to translocate from the basolateral to the apical side of the pseudolumen formed by colon carcinoma cells after binding to the polyIg receptor (pIgR). A genomic chimeric mouse-human IgA2 construct was made using one of our most specific anti-CEA hybridomas, CE-25. The chimeric IgA (chIgA) was expressed in the Sp2/0 myeloma cell line. The secreted recombinant antibody was found to consist mostly of a dimeric form of IgA with a molecular weight of about 350 kDa. The dimeric chIgA was shown to translocate efficiently in vitro across a monolayer of epithelial cells expressing the pIgR and to retain full CEA binding activity.
Resumo:
The receptor for hyaluronic acid-mediated motility (RHAMM) is an antigen eliciting both humoral and cellular immune responses in patients with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and multiple myeloma (MM). We initiated a phase 1 clinical trial vaccinating 10 patients with R3 (ILSLELMKL), a highly immunogenic CD8(+) T-cell epitope peptide derived from RHAMM. In 7 of 10 patients, we detected an increase of CD8(+)/HLA-A2/RHAMM R3 tetramer(+)/CD45RA(+)/CCR7(-)/CD27(-)/CD28(-) effector T cells in accordance with an increase of R3-specific CD8(+) T cells in enzyme linked immunospot (ELISpot) assays. In chromium release assays, a specific lysis of RHAMM-positive leukemic blasts was shown. Three of 6 patients with myeloid disorders (1/3 AML, 2/3 MDS) achieved clinical responses: one patient with AML and one with MDS showed a significant reduction of blasts in the bone marrow after the last vaccination. One patient with MDS no longer needed erythrocyte transfusions after 4 vaccinations. Two of 4 patients with MM showed a reduction of free light chain serum levels. Taken together, RHAMM-R3 peptide vaccination induced both immunologic and clinical responses, and therefore RHAMM constitutes a promising target for further immunotherapeutic approaches. This study is registered at http://ISRCTN.org as ISRCTN32763606 and is registered with EudraCT as 2005-001706-37.
Resumo:
DNA vaccination is a promising approach for inducing both humoral and cellular immune responses. The mode of plasmid DNA delivery is critical to make progress in DNA vaccination. Using human papillomavirus type 16 E7 as a model antigen, this study evaluated the effect of peptide-polymer hybrid including PEI600-Tat conjugate as a novel gene delivery system on the potency of antigen-specific immunity in mice model. At ratio of 10:50 PEI-Tat/E7DNA (w/w), both humoral and cellular immune responses were significantly enhanced as compared with E7DNA construct and induced Th1 response. Therefore, this new delivery system could have promising applications in gene therapy.
Resumo:
Le répertoire cellulaire Τ a pour but d'être tolérant aux antigènes du soi afin d'éviter l'induction de maladies autoimmunes. C'est pourquoi les lymphocytes Τ autoréactifs sont éliminés dans le thymus lors de leur développement par le processus de sélection négative. La plupart des recherches étudient les lymphocytes Τ de haute avidité. Ces lymphocytes Τ de haute avidité sont très sensibles et réagissent fortement à un antigène du soi. En conséquence, ces cellules induisent le développement de maladies autoimmunes lorsqu'elles ciblent des organes exprimant l'antigène du soi. Plusieurs études ont montré que les lymphocytes Τ qui réagissent faiblement aux antigènes spécifiques à un tissu, nommé lymphocytes Τ de faible avidité, peuvent contourner les mécanismes de tolérance centrale et périphérique. J'ai utilisé des souris Rip-mOva qui expriment l'Ovalbumine comme antigène du soi spécifique à un tissu. Dans ces souris transgéniques Rip-mOva, les lymphocytes Τ de faible avidité survivent à la sélection négative. Une fois stimulés à la périphérie, ces lymphocytes Τ CD8+ de faible avidité ont la capacité d'infiltrer les organes qui expriment l'antigène du soi chez les souris Rip-mOva et peuvent induire une destruction tissulaire. L'objectif principal de mon projet de thèse était de comprendre les caractéristiques phénotypiques et fonctionnelles de ces lymphocytes Τ dans un état d'équilibre et dans un contexte infectieux. Pour étudier ces cellules dans un modèle murin bien défini, nous avons généré des souris exprimant un récepteur de cellule Τ transgénique appelé OT-3. Ces souris transgéniques OT-3 ont des lymphocytes Τ CD8+ de faible avidité spécifiques à l'épitope SIINFEKL de l'antigène Ovalbumine. Nous avons démontré qu'un grand nombre de lymphocytes Τ CD8+ OT-3 ne sont pas éliminés lors de la sélection négative dans le thymus après avoir rencontré l'antigène du soi. Par conséquent, les lymphocytes Τ OT-3 de faible avidité sont présents dans une fenêtre de sélection comprise entre la sélection positive et négative. Cette limite se définie comme le seuil d'affinité et est impliquée dans l'échappement de certains lymphocytes Τ OT- 3 autoréactifs. A la périphérie, ces cellules sont capables d'induire une autoimmunité après stimulation au cours d'une infection, ce qui nous permet de les définir comme étant non tolérante et non dans un état anergique à la périphérie. Nous avons également étudié le seuil d'activation des lymphocytes Τ OT-3 à faible avidité à la périphérie et avons constaté que des ligands peptidiques plus faibles que l'épitope natif SIINFEKL sont capables de les activer au cours d'une infection ainsi que de les différencier en lymphocytes Τ effecteurs et mémoires. Les données illustrent une déficience lors de la sélection négative dans le thymus de lymphocytes Τ CD8+ autoréactifs de faible avidité contre un antigène du soi spécifique à tissu et montrent que ces cellules sont entièrement compétentes lors d'une infection. - The diverse Τ cell repertoire needs to be tolerant to self-antigen to avoid the induction of autoimmunity. This is why autoreactive developing Τ cells are deleted in the thymus. The deletion of self-reactive Τ cells occurs through the process of negative selection. Most studies investigated high avidity Τ cells. These high avidity Τ cells are very sensitive and strongly react to a self-antigen. As a consequence, these cells induce the development of autoimmunity when they target organs which express the self-antigen. High avidity autoreactive CD8+ Τ cells are deleted in the thymus. However, several studies have shown Τ cells that weakly respond to tissue-restricted antigen, referred to as low avidity Τ cells, can bypass central and peripheral tolerance mechanisms. I used Rip-mOva mice that expressed Ovalbumin as a neo self-antigen in a tissue-restricted fashion. In these transgenic Rip-mOva mice low avidity CD8+ Τ cells survive negative selection. Upon stimulation in the periphery, these low avidity CD8+ Τ cells have the ability to infiltrate organs that express the self-antigen in the Rip-mOva mice and can also induce the destruction of the tissue. The major aim of my PhD project was to understand the phenotypic and functionality characteristics of these Τ cells in a steady-state condition and in a context of an infection. To study these cells in a well-defined mouse model, we generated OT-3 Τ cell receptor transgenic mice that express low avidity CD8+ Τ cells that are specific for the SIINFEKL epitope of the Ovalbumin antigen. We have been able to demonstrate that a large number of OT-3 CD8+ Τ cells survive negative selection in the thymus after encountering the self-antigen. Thus, low avidity OT-3 Τ cells are present in a window of selection comprised between positive and negative selection. This boundary defined as the affinity threshold is involved in the escape of some autoreactive low avidity OT-3 Τ cells. Once they circulate in the periphery, they are able to induce autoimmunity after stimulation during an infection, allowing us to allocate these cells as being non-tolerant and not in an anergic state in the periphery. We have also looked at the threshold of activation of low avidity OT-3 CD8+ Τ cells in the periphery and found that peptide ligands that are weaker than the native SIINFEKL epitope are able to activate OT-3 Τ cells during an infection and to differentiate them into effector and memory Τ cells. The data illustrate the impairment of negatively selecting low avidity autoreactive CD8+ Τ cells against a tissue-restricted antigen in the thymus and shows that these cells are fully competent upon an infection.
Resumo:
: To assess in a cohort of Caucasian patients exposed to stavudine (d4T) the association of polymorphisms in pyrimidine pathway enzymes and HLA-B*4001 carriage with HIV lipodystrophy syndrome (HALS). 336 patients, 187 with HALS and 149 without HALS, and 72 controls were recruited. HALS was associated with the presence of a low expression, thymidylate synthase (TS) genotype polymorphism. Methylene-tetrahydrofolate reductase (MTHFR) gene polymorphisms and HLA-B*4001 carriage were not associated with HALS or d4T-TP intracellular levels. In conclusion HALS is associated with combined low-expression TS and MTHFR associated with high activity polymorphisms but not with HLA-B*4001 carriage.
Resumo:
The binding and penetration of two 125I-labeled anti-carcinoembryonic antigen (CEA) monoclonal antibodies (MAb) and their F(ab')2 and Fab fragments were measured in multicellular spheroids of poorly (HT29) and moderately well differentiated (Co112) human colon adenocarcinomas which express different amounts of CEA. Spheroids cultured in vitro model tumor microenvironments where poor vascular supply may modulate antigen expression and accessibility. The two MAb studied, 202 and 35, were shown previously to react with different CEA epitopes and to have high affinities of 1.2 and 5.8 X 10(9) M-1, respectively. MAb 202 has also been shown to cross-react with antigens present on human granulocytes and normal epithelial cells from human lung and pancreas. Specific binding of intact MAb and fragments of both antibodies was demonstrated for both types of human colon carcinoma spheroids compared to mouse colon carcinoma (CL26) and mammary tumor (EMT6/Ro) spheroids. Total binding of MAb and fragments was greater (1.5- to 2.5-fold) after 4 h compared to 1 h of exposure; the amount of binding compared to control IgG1 was 5- to 30-fold greater after 1-h incubation and 15 to 200 times greater after 4 h. This binding was stable as demonstrated by short and long wash experiments at 37 degrees and 4 degrees C. The binding of F(ab')2 and Fab fragments of the anti-CEA MAb 35 to spheroids of human colon Co112 was almost 2-fold greater than that of the intact MAb. However, for MAb 202, the binding of intact MAb and F(ab')2 was greater than that of Fab fragments. In addition the binding of both intact and F(ab')2 fragments of MAb 202 was greater than that obtained with MAb 35. Specific binding of both antibodies to HT29 spheroids, which express less CEA, was decreased for MAb and fragments of both 202 and 35. Autoradiography and immunoperoxidase experiments were performed to determine the penetration of MAb and fragments after incubation with intact spheroids. Comparisons were made with labeled MAb directly applied to frozen sections of spheroids. F(ab')2 and Fab fragments of both antibodies were bound at the surface of intact spheroids and penetrated to eight to ten cells, but the intact MAb were localized mainly at the spheroid surface and the outer one to three cell layers. There was much less binding at the surfaces of HT29 compared to Co112 spheroids. An enzyme immunoassay using MAb 35 and 202 demonstrated that Co112 spheroids produced about 8-fold more CEA/mg of cell protein than did monolayer cultures.(ABSTRACT TRUNCATED AT 400 WORDS)
Resumo:
Through a rational design approach, we generated a panel of HLA-A*0201/NY-ESO-1(157-165)-specific T cell receptors (TCR) with increasing affinities of up to 150-fold from the wild-type TCR. Using these TCR variants which extend just beyond the natural affinity range, along with an extreme supraphysiologic one having 1400-fold enhanced affinity, and a low-binding one, we sought to determine the effect of TCR binding properties along with cognate peptide concentration on CD8(+) T cell responsiveness. Major histocompatibility complexes (MHC) expressed on the surface of various antigen presenting cells were peptide-pulsed and used to stimulate human CD8(+) T cells expressing the different TCR via lentiviral transduction. At intermediate peptide concentration we measured maximum cytokine/chemokine secretion, cytotoxicity, and Ca(2+) flux for CD8(+) T cells expressing TCR within a dissociation constant (K(D)) range of ∼1-5 μM. Under these same conditions there was a gradual attenuation in activity for supraphysiologic affinity TCR with K(D) < ∼1 μM, irrespective of CD8 co-engagement and of half-life (t(1/2) = ln 2/k(off)) values. With increased peptide concentration, however, the activity levels of CD8(+) T cells expressing supraphysiologic affinity TCR were gradually restored. Together our data support the productive hit rate model of T cell activation arguing that it is not the absolute number of TCR/pMHC complexes formed at equilibrium, but rather their productive turnover, that controls levels of biological activity. Our findings have important implications for various immunotherapies under development such as adoptive cell transfer of TCR-engineered CD8(+) T cells, as well as for peptide vaccination strategies.
Resumo:
The mycolyl transferase antigen 85 complex is a major secreted protein family from mycobacterial culture filtrate, demonstrating powerful T cell stimulatory properties in most HIV-negative, tuberculin-positive volunteers with latent M.tuberculosis infection and only weak responses in HIV-negative tuberculosis patients. Here, we have analyzed T cell reactivity against PPD and Ag85 in HIV-infected individuals, without or with clinical symptoms of tuberculosis, and in AIDS patients with disease caused by nontuberculous mycobacteria. Whereas responses to PPD were not significantly different in HIV-negative and HIV-positive tuberculin-positive volunteers, responses to Ag85 were significantly decreased in the HIV-positive (CDC-A and CDC-B) group. Tuberculosis patients demonstrated low T cell reactivity against Ag85, irrespective of HIV infection, and finally AIDS patients suffering from NTM infections were completely nonreactive to Ag85. A one-year follow-up of twelve HIV-positive tuberculin-positive individuals indicated a decreased reactivity against Ag85 in patients developing clinical tuberculosis, highlighting the protective potential of this antigen.
Resumo:
Four monoclonal antibodies against carcinoembryonic antigen (CEA) have been selected from 32 hybrids that produce antibodies against this antigen, by the criteria of high affinity for CEA and low cross-reactivity with granulocyte glycoprotein(s). The specificity of tumor localization in vivo of the four MAb, and their F(ab')2 and Fab fragments was compared in nude mice bearing grafts of a serially transplanted, CEA-producing, human colon carcinoma. The distribution of radiolabeled MAb and their fragments after intravenous injection was analyzed by direct measurement of radioactivity in tumor and normal organs, as well as by whole-body scanning and by autoradiography of tumor sections. Paired labeling experiments, in which 131I-labeled antibody or fragments and 125I-labeled control IgG are injected simultaneously, were undertaken to determine the relative tumor uptakes of each labeled protein. The tumor antibody uptake divided by that of control IgG defines the specificity index of localization. Tumor antibody uptakes (as compared with the whole mouse), ranging between 7 and 15, and specificity indices ranging between 3.4 and 6.8, were obtained with the four intact MAb at day 4-5 after injection. With F(ab')2 fragments of the four MAb, at day 3, the tumor antibody uptakes ranged between 12 and 24 and the specificity indices between 5.3 and 8.2. With the Fab fragments prepared from the two most promising MAb, the antibody uptakes reached values of 34 and 82 at day 2-3 and the specificity indices were as high as 12 and 19. The scanning results paralleled those obtained by direct measurement of radioactivity. With intact MAb, tumor grafts of 0.5-1 g gave very contrasted positive scans 3 d after injection. Using MAb fragments, tumors of smaller size were detectable earlier. The best results were obtained with Fab fragments of MAb 35, which gave clear detections of tumors weighing only 0.1 g as early as 48 h after injection. Autoradiographs of tumor sections from mice injected with 125I-labeled MAb demonstrated that the radioactivity was localized in the tumor tissues and not in the stromal connective tissue of mouse origin. The highest radioactivity concentration was localized in areas known to contain CEA such as the pseudolumen of glands and the apical side of carcinoma cells. The penetration of radioactivity in the central part of tumor nodules and the pseudolumen appeared to be increased with the use of MAb fragments.