938 resultados para fabrication of GaN epitaxial films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Raman measurements have been performed with the back-scattering geometry on the SiC films grown on Si(100) and sapphire (0001) by LPCVD. Typical TO and LO phonon peaks of 3C-SiC were observed for all the samples grown on Si and apphire substrates, indicating the epilayers are 3C-SiC polytype. Using a free-standing 3C-SiC film removed from Si(100) as a free-stress sample, the stresses of 3C-SiC on Si(100) and sapphire (0001) were estimated according to the shift of TO and LO phonons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new technique to fabricate silicon condenser microphone is presented. The technique is based on the use of oxidized porous silicon as sacrificial layer for the air gap and the heavy p~+-doping silicon of approximately 15μm thickness for the stiff backplate. The measured sensitivity of the microphone fabricated with this technique is in the range from -45dB (5.6mV/Pa) to -55dB (1.78mV/Pa) under the frequency from 500Hz to 10kHz, and shows a gradual increase at high frequency. The cut-off frequency is above 20kHz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

于2010-11-23批量导入

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design and fabrication of 1550 nm semiconductor optical amplifiers (SOAs) and the characteristics of the fabricated SOA are reported. A novel gain measurement technique based on the integrations of the product of emission spectrum and a phase function over one mode interval is proposed for Fabry-Perot semiconductor lasers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we report the fabrication of 1.3 mum Si-based MEMS tunable optical filter, by surface micromaching. Through wet etching of polyimide sacrificial layer, a tunable Fabry-Perot filter was successfully fabricated. We make the capacitance measurement of the prototype device, compare the experimental curve with the theoretical one, and explain the difference between them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polarization-insensitive semiconductor optical amplifiers (SOA's) with tensile-strained multi-quantum-wells as actice regions are designed and fabricated. The 6x6 Luttinger-Kohn model and Bir-Pikus Hamiltonian are employed to calculate the valence subband structures of strained quantum wells, and then a Lorentzian line-shape function is combined to calculate the material gain spectra for TE and TM modes. The device structure for polarization insensitive SOA is designed based on the materialde gain spectra of TE and TM modes and the gain factors for multilayer slab waveguide. Based on the designed structure parameters, we grow the SOA wafer by MOCVD and get nearly magnitude of output power for TE and TM modes from the broad-area semiconductor lasers fabricated from the wafer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel silicon-on-reflector substrate for Si-based resonant-cavity-enhanced photodetectors has been fabricated by using Si-based sol-gel and smart-cut techniques. The Si/SiO2 Bragg reflector is controlled in situ by electron beam evaporation and the thickness can be adjusted to get high reflectivity. The reflectance spectra of the silicon-on-reflector substrate with five pairs of Si/SiO2 reflector have been measured and simulated by transfer matrix model. The reflectivity at operating wavelength is close to 100%. Based on the silicon-on-reflector substrate, SiGe/Si multiple quantum wells resonant-cavity-enhanced photodetectors for 1.3 mu m wavelength have been designed and simulated. Ten-fold enhancement of the quantum efficiency of resonant-cavity-enhanced photodetectors compared with conventional photodetectors is predicted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel pulsed rapid thermal processing (PRTP) method has been used for realizing the solid-phase crystallization of amorphous silicon films prepared by PECVD. The microstructure and surface morphology of the crystallized films are investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The results indicate that this PRTP is a suitable post-crystallization technique for fabricating large-area polycrystalline silicon films with good structural qualities such as large grain size, small lattice microstain and smooth surface morphology on low-cost substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We designed and fabricated GaAs OMIST (Optical-controlled Metal-Insulator-Semiconductor Thyristor) device. Using oxidation of A1As layer that is grown by MBE form the Ultra-Thin semi-Insulating layer (UTI) of the GAAS OMIST. The accurate control and formation of high quality semi-insulating layer (AlxOy) are the key processes for fabricating GaAs OMIST. The device exhibits a current-controlled negative resistance region in its I-V characteristics. When illuminated, the major effect of optical excitation is the reduction of the switching voltage. If the GaAs OMIST device is biased at a voltage below its dark switching voltage V-s, sufficient incident light can switch OMIST from high impedance low current"off"state to low impedance high current "on"state. The absorbing material of OMIST is GaAs, so if the wavelength of incident light within 600 similar to 850nm can be detected effectively. It is suitable to be used as photodetector for digital optical data process. The other attractive features of GaAs OMIST device include suitable conducted current, switching voltage and power levels for OEIC, high switch speed and high sensitivity to light or current injection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report on the design, growth and fabrication of 980nm strained InGaAs quantum well lasers employing novel material system of Al-free active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in laser structure design, improvement of surface morphology and laser performance. We demonstrate an optimized broad-waveguide structure for obtaining high power 980nm quantum well lasers with low vertical beam divergence. The laser structure was grown by low-pressure metalorganic chemical vapor deposition, which exhibit a high internal quantum efficiency of similar to 90% and a low internal loss of 1.5-2.5 cm(-1). The broad-area and ridge-waveguide laser devices are both fabricated. For 100 mu m wide stripe lasers with cavity length of 800 mu m, a low threshold current of 170mA, a high slope efficiency of 1.0W/A and high output power of more than 3.5W are achieved. The temperature dependences of the threshold current and the emitting spectra demonstrate a very high characteristic temperature coefficient (T-o) of 200-250K and a wavelength shift coefficient of 0.34nm/degrees C. For 4 mu m-width ridge waveguide structure laser devices, a maximum output power of 340mW with GOD-free thermal roll-over characteristics is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A type of thermo-optic variable optical attenuator based on multimode interference coupler is proposed. The optical field propagation properties of the devices are simulated using finite difference beam propagation method. The propagation loss of the fabricated device is 2-4.2 dB at the wavelength range 1510-1610 nm. The total power consumption is 370 mW and the maximum attenuation is more than 25 dB, which almost can meet the requirements of optical fiber communication systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous Sic films are deposited on Si (111) substrates by rf magnetron sputtering and then annealed at 1200 degreesC for different times by a dc self-heating method in a vacuum annealing system. The crystallization of the amorphous Sic is determined by Raman scattering at room temperature and X-ray diffraction. The experimental result indicates that the Sic nanocrystals have formed in the films. The topography of the as-annealed films is characterized by atomic force microscopy. Measurements of photoluminescence of the as-annealed films show blue or violet light emission from the nanocrystalline Sic films and photoluminescence peak shifts to short wavelength side as the annealing time decreases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon-based silica waveguide (SiO2/Si) devices have huge applications in optical telecommunication. SiO2 up to 25-mu m thick is necessary for some passive SiO2/Si waveguide devices. Oxidizing porous silicon to obtain thick SiO2 as cladding layer is presented. The experimental results of porous layer and oxidized porous layer formation were given. The relationship between cracking of SiO2 and temperature varying rate was given experimentally. Such conclusions are drawn: oxidation rate of porous silicon is several orders faster than that of bulk silicon; appropriate temperature variation rate during oxidation can prevent SiO2 on silicon substrates from cracking, and 25 mu m thick silicon dioxide layer has been obtained. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hole effective-mass Hamiltonian for the semiconductors of wurtzite structure is established, and the effective-mass parameters of GaN and AlxGa1-xN are given. Besides the asymmetry in the z and x, y directions, the linear term of the momentum operator in the Hamiltonian is essential in determining the valence band structure, which is different from that of the zinc-blende structure. The binding energies of acceptor states are calculated by solving strictly the effective-mass equations. The binding energies of donor and acceptor for wurtzite GaN are 20 and 131, 97 meV, respectively, which are inconsistent with the recent experimental results. It is proposed that there are two kinds of acceptors in wurtzite GaN. One kind is the general acceptor such as C, substituting N, which satisfies the effective-mass theory, and the other includes Mg, Zn, Cd etc., the binding energy of which deviates from that given by the effective-mass theory. Experimentally, wurtzite GaN was grown by the MBE method, and the PL spectra were measured. Three main peaks are assigned to the DA transitions from the two kinds of acceptor. Some of the transitions were identified as coming from the cubic phase of GaN, which appears randomly within the predominantly hexagonal material. The binding energy of acceptor in ALN is about 239, 158 meV, that in AlxGa1-xN alloys (x approximate to 0.2) is 147, 111 meV, close to that in GaN. (C) 2000 Published by Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have found that GaN epilayers grown by NH3-source molecular beam epitaxy (MBE) contain hydrogen. Dependent on the hydrogen concentration, GaN on (0001) sapphire can be either under biaxially compressive strain or under biaxially tensile strain. Furthermore, we notice that background electrons in GaN increase with hydrogen incorporation. X-ray photoelectron spectroscopy (XPS) measurements of the N1s region indicate that hydrogen is bound to nitrogen. So, the microdefect Ga...H-N is an effective nitrogen vacancy in GaN, and it may be a donor partly answering for the background electrons. (C) 1999 Elsevier Science B.V. All rights reserved.