982 resultados para TROPHOBLAST GIANT CELLS
Green-fluorescent protein facilitates rapid in vivo detection of genetically transformed plant cells
Resumo:
Early detection of plant transformation events is necessary for the rapid establishment and optimization of plant transformation protocols. We have assessed modified versions of the green fluorescent protein (GFP) from Aequorea victoria as early reporters of plant transformation using a dissecting fluorescence microscope with appropriate filters. Gfp-expressing cells from four different plant species (sugarcane, maize, lettuce, and tobacco) were readily distinguished, following either Agrobacterium-mediated or particle bombardment-mediated transformation. The identification of gfp-expressing sugarcane cells allowed for the elimination of a high proportion of non-expressing explants and also enabled visual selection of dividing transgenic cells, an early step in the generation of transgenic organisms. The recovery of transgenic cell clusters was streamlined by the ability to visualize gfp-expressing tissues in vitro.
Resumo:
The objective of this project is to investigate the strain-rate dependent mechanical behaviour of single living cells using both experimental and numerical techniques. The results revealed that living cells behave as porohyperlastic materials and that both solid and fluid phases within the cells play important roles in their mechanical responses. The research reported in this thesis provides a better understanding of the mechanisms underlying the cellular responses to external mechanical loadings and of the process of mechanical signal transduction in living cells. It would help us to enhance knowledge of and insight into the role of mechanical forces in supporting tissue regeneration or degeneration.
Resumo:
Background: Multipotent mesenchymal stromal cells suppress T-cell function in vitro, a property that has underpinned their use in treating clinical steroid-refractory graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. However the potential of mesenchymal stromal cells to resolve graft-versus-host disease is confounded by a paucity of pre-clinical data delineating their immunomodulatory effects in vivo. Design and Methods: We examined the influence of timing and dose of donor-derived mesenchymal stromal cells on the kinetics of graft-versus-host disease in two murine models of graft-versus-host disease (major histocompatibility complex-mismatched: UBI-GFP/BL6 [H-2b]→BALB/c [H-2d] and the sibling transplant mimic, UBI-GFP/BL6 [H-2b]→BALB.B [H-2b]) using clinically relevant conditioning regimens. We also examined the effect of mesenchymal stromal cell infusion on bone marrow and spleen cellular composition and cytokine secretion in transplant recipients. Results: Despite T-cell suppression in vitro, mesenchymal stromal cells delayed but did not prevent graft-versus-host disease in the major histocompatibility complex-mismatched model. In the sibling transplant model, however, 30% of mesenchymal stromal cell-treated mice did not develop graft-versus-host disease. The timing of administration and dose of the mesenchymal stromal cells influenced their effectiveness in attenuating graft-versus-host disease, such that a low dose of mesenchymal stromal cells administered early was more effective than a high dose of mesenchymal stromal cells given late. Compared to control-treated mice, mesenchymal stromal cell-treated mice had significant reductions in serum and splenic interferon-γ, an important mediator of graft-versus-host disease. Conclusions: Mesenchymal stromal cells appear to delay death from graft-versus-host disease by transiently altering the inflammatory milieu and reducing levels of interferon-γ. Our data suggest that both the timing of infusion and the dose of mesenchymal stromal cells likely influence these cells’ effectiveness in attenuating graft-versus-host disease.
Resumo:
The silk protein fibroin (Bombyx mori) provides a potential substrate for use in ocular tissue reconstruction. We have previously demonstrated that transparent membranes produced from fibroin support cultivation of human limbal epithelial (HLE) cells (Tissue Eng A. 14(2008)1203-11). We extend this body of work to studies of human limbal stromal cell (HLS) growth on fibroin in the presence and absence of serum. Also, we investigate the ability to produce a bi-layered composite scaffold of fibroin with an upper HLE layer and lower HLS layer.
Resumo:
The risk of prostate cancer and disease progression may potentially be increased by oxidative stress. This project examined the stability of nitroxide antioxidants and their effects on cell growth, survival and gene regulation in prostate cancer cells. The novel nitroxide, CTMIO, synthesised here at QUT, was found to have minimal toxicity and modulated the expression of a subset of oxidative stress and antioxidant-related genes distinct from those regulated by a related derivative. This study has provided a step forward in our understanding of the mechanism of action of nitroxides within cells.
Resumo:
The rodent olfactory systems comprise the main olfactory system for the detection of odours and the accessory olfactory system which detects pheromones. In both systems, olfactory axon fascicles are ensheathed by olfactory glia, termed olfactory ensheathing cells (OECs), which are crucial for the growth and maintenance of the olfactory nerve. The growth-promoting and phagocytic characteristics of OECs make them potential candidates for neural repair therapies such as transplantation to repair the injured spinal cord. However, transplanting mixed populations of glia with unknown properties may lead to variations in outcomes for neural repair. As the phagocytic capacity of the accessory OECs has not yet been determined, we compared the phagocytic capacity of accessory and main OECs in vivo and in vitro. In normal healthy animals, the accessory OECs accumulated considerably less axon debris than main OECs in vivo. Analysis of freshly dissected OECs showed that accessory OECs contained 20% less fluorescent axon debris than main OECs. However, when assayed in vitro with exogenous axon debris added to the culture, the accessory OECs phagocytosed almost 20% more debris than main OECs. After surgical removal of one olfactory bulb which induced the degradation of main and accessory olfactory sensory axons, the accessory OECs responded by phagocytosing the axon debris. We conclude that while accessory OECs have the capacity to phagocytose axon debris, there are distinct differences in their phagocytic capacity compared to main OECs. These distinct differences may be of importance when preparing OECs for neural transplant repair therapies.
Resumo:
During development of the primary olfactory system, axon targeting is inaccurate and axons inappropriately project within the target layer or overproject into the deeper layers of the olfactory bulb. As a consequence there is considerable apoptosis of primary olfactory neurons during embryonic and postnatal development and axons of the degraded neurons need to be removed. Olfactory ensheathing cells (OECs) are the glia of the primary olfactory nerve and are known to phagocytose axon debris in the adult and postnatal animal. However, it is unclear when phagocytosis by OECs first commences. We investigated the onset of phagocytosis by OECs in the developing mouse olfactory system by utilizing two transgenic reporter lines: OMP-ZsGreen mice which express bright green fluorescent protein in primary olfactory neurons, and S100β-DsRed mice which express red fluorescent protein in OECs. In crosses of these mice, the fate of the degraded axon debris is easily visualized. We found evidence of axon degradation at embryonic day (E)13.5. Phagocytosis of the primary olfactory axon debris by OECs was first detected at E14.5. Phagocytosis of axon debris continued into the postnatal animal during the period when there was extensive mistargeting of olfactory axons. Macrophages were often present in close proximity to OECs but they contributed only a minor role to clearing the axon debris, even after widespread degeneration of olfactory neurons by unilateral bulbectomy and methimazole treatment. These results demonstrate that from early in embryonic development OECs are the primary phagocytic cells of the primary olfactory nerve.
Resumo:
Multidrug resistance (MDR) occurs in prostate cancer, and this happens when the cancer cells resist chemotherapeutic drugs by pumping them out of the cells. MDR inhibitors such as cyclosporin A (CsA) can stop the pumping and enhance the drugs accumulated in the cells. The cellular drug accumulation is monitored using a microfluidic chip mounted on a single cell bioanalyzer. This equipment has been developed to measure accumulation of drugs such as doxorubicin (DOX) and fluorescently labeled paclitaxel (PTX) in single prostate cancer cells. The inhibition of drug efflux on the same prostate cell was examined in drug-sensitive and drug-resistant cells. Accumulation of these drug molecules was not found in the MDR cells, PC-3 RX-DT2R cells. Enhanced drug accumulation was observed only after treating the MDR cell in the presence of 5 μM of CsA as the MDR inhibitor. We envision this monitoring of the accumulation of fluorescent molecules (drug or fluorescent molecules), if conducted on single patient cancer cells, can provide information for clinical monitoring of patients undergoing chemotherapy in the future.
Resumo:
Introduction Sphingosine-1-phosphate receptor 1 (S1P1) is crucial for regulation of immunity and bone metabolism. This study aimed to investigate the expression of S1P1 in rat periapical lesions and its relationship with receptor activator of nuclear factor kappa B ligand (RANKL) and regulatory T (Treg) cells. Methods Periapical lesions were induced by pulp exposure in the first lower molars of 55 Wistar rats. Thirty rats were killed on days 0, 7, 14, 21, 28, and 35, and their mandibles were harvested for x-ray imaging, micro–computed tomography scanning, histologic observation, immunohistochemistry, enzyme histochemistry, and double immunofluorescence analysis. The remaining 25 rats were killed on days 0, 14, 21, 28, and 35, and mandibles were harvested for flow cytometry. Results The volume and area of the periapical lesions increased from day 0 to day 21 and then remained comparably stable after day 28. S1P1-positive cells were observed in the inflammatory periapical regions; the number of S1P1-positive cells peaked at day 14 and then decreased from day 21 to day 35. The distribution of S1P1-positive cells was positively correlated with the dynamics of RANKL-positive cells but was negatively correlated with that of Treg cells. Conclusions S1P1 expression was differentially correlated with RANKL and Treg cell infiltration in the periapical lesions and is therefore a contributing factor to the pathogenesis of such lesions.
Resumo:
Currently used xenograft models for prostate cancer bone metastasis lack the adequate tissue composition necessary to study the interactions between human prostate cancer cells and the human bone microenvironment. We introduce a tissue engineering approach to explore the interactions between human tumor cells and a humanized bone microenvironment. Scaffolds, seeded with human primary osteoblasts in conjunction with BMP7, were implanted into immunodeficient mice to form humanized tissue engineered bone constructs (hTEBCs) which consequently resulted in the generation of highly vascularized and viable humanized bone. At 12 weeks, PC3 and LNCaP cells were injected into the hTEBCs. Seven weeks later the mice were euthanized. Micro-CT, histology, TRAP, PTHrP and osteocalcin staining results reflected the different characteristics of the two cell lines regarding their phenotypic growth pattern within bone. Microvessel density, as assessed by vWF staining, showed that tumor vessel density was significantly higher in LNCaP injected hTEBC implants than in those injected with PC3 cells (p\0.001). Interestingly, PC3 cells showed morphological features of epithelial and mesenchymal phenotypes suggesting a cellular plasticity within this microenvironment. Taken together, a highly reproducible humanized model was established which is successful in generating LNCaP and PC3 tumors within a complex humanized bone microenvironment. This model simulates the conditions seen clinically more closely than any other model described in the literature to date and hence represents a powerful experimental platform that can be used in future work to investigate specific biological questions relevant to bone metastasis.
Resumo:
Despite monolayer cultures being widely used for cancer drug development and testing, 2D cultures tend to be hypersensitive to chemotherapy and are relatively poor predictors of whether a drug will provide clinical benefit. Whilst generally more complicated, three dimensional (3D) culture systems often better recapitulate true cancer architecture and provide a more accurate drug response. As a step towards making 3D cancer cultures more accessible, we have developed a microwell platform and surface modification protocol to enable high throughput manufacture of 3D cancer aggregates. Herein we use this novel system to characterize prostate cancer cell microaggregates, including growth kinetics and drug sensitivity. Our results indicate that prostate cancer cells are viable in this system, however some non-cancerous prostate cell lines are not. This system allows us to consistently control for the presence or absence of an apoptotic core in the 3D cancer microaggregates. Similar to tumor tissues, the 3D microaggregates display poor polarity. Critically the response of 3D microaggregates to the chemotherapeutic drug, docetaxel, is more consistent with in vivo results than the equivalent 2D controls. Cumulatively, our results demonstrate that these prostate cancer microaggregates better recapitulate the morphology of prostate tumors compared to 2D and can be used for high-throughput drug testing.
Resumo:
This study examined the role of heparan sulfate proteoglycans (HSPGs) in neural lineage differentiation of human mesenchymal stem cells (hMSCs). Several HSPGs were identified as potential new targets controlling neural fate specification and may be applied to the development of improved models to examine and repair brain damage. hMSCs were characterised throughout extended in vitro expansion for neural lineage potential (neurons, astrocytes, oligodendrocytes) and differentiated using terminal differentiation and intermediate sphere formation. Brain damage and neurological disorders caused by injury or disease affect a large number of people often resulting in lifelong disabilities. Multipotent mesenchymal stem cells have a large capacity for self-renewal and provide an excellent model to examine the regulation and contribution of both stem cells and their surrounding microenvironment to the repair of neural tissue damage.
Resumo:
The EphB4 receptor tyrosine kinase is over-expressed in a variety of different epithelial cancers including prostate where it has been shown to be involved in survival, migration and angiogenesis. We report here that EphB4 also resides in the nucleus of prostate cancer cell lines. We used in silico methods to identify a bipartite nuclear localisation signal (NLS) in the extracellular domain and a monopartite NLS sequence in the intracellular kinase domain of EphB4. To determine whether both putative NLS sequences were functional, fragments of the EphB4 sequence containing each NLS were cloned to create EphB4NLS-GFP fusion proteins. Localisation of both NLS-GFP proteins to the nuclei of transfected cells was observed, demonstrating that EphB4 contains two functional NLS sequences. Mutation of the key amino residues in both NLS sequences resulted in diminished nuclear accumulation. As nuclear translocation is often dependent on importins we confirmed that EphB4 and importin-α can interact. To assess if nuclear EphB4 could be implicated in gene regulatory functions potential EphB4-binding genomic loci were identified using chromatin immunoprecipitation and Lef1 was confirmed as a potential target of EphB4-mediated gene regulation. These novel findings add further complexity to the biology of this important cancer-associated receptor.
Resumo:
Background The EphB4 receptor tyrosine kinase is overexpressed in many cancers including prostate cancer. The molecular mechanisms by which this ephrin receptor influences cancer progression are complex as there are tumor-promoting ligand-independent mechanisms in place as well as ligand-dependent tumor suppressive pathways. Methods We employed transient knockdown of EPHB4 in prostate cancer cells, coupled with gene microarray analysis, to identify genes that were regulated by EPHB4 and may represent linked tumor-promoting factors. We validated target genes using qRT-PCR and employed functional assays to determine their role in prostate cancer migration and invasion. Results We discovered that over 500 genes were deregulated upon EPHB4 siRNA knockdown, with integrin β8 (ITGB8) being the top hit (29-fold down-regulated compared to negative non-silencing siRNA). Gene ontology analysis found that the process of cell adhesion was highly deregulated and two other integrin genes, ITGA3 and ITGA10, were also differentially expressed. In parallel, we also discovered that over-expression of EPHB4 led to a concomitant increase in ITGB8 expression. In silico analysis of a prostate cancer progression microarray publically available in the Oncomine database showed that both EPHB4 and ITGB8 are highly expressed in prostatic intraepithelial neoplasia, the precursor to prostate cancer. Knockdown of ITGB8 in PC-3 and 22Rv1 prostate cancer cells in vitro resulted in significant reduction of cell migration and invasion. Conclusions These results reveal that EphB4 regulates integrin β8 expression and that integrin β8 plays a hitherto unrecognized role in the motility of prostate cancer cells and thus targeting integrin β8 may be a new treatment strategy for prostate cancer.