952 resultados para Strategic implementation
Resumo:
We propose the design and implementation of hardware architecture for spatial prediction based image compression scheme, which consists of prediction phase and quantization phase. In prediction phase, the hierarchical tree structure obtained from the test image is used to predict every central pixel of an image by its four neighboring pixels. The prediction scheme generates an error image, to which the wavelet/sub-band coding algorithm can be applied to obtain efficient compression. The software model is tested for its performance in terms of entropy, standard deviation. The memory and silicon area constraints play a vital role in the realization of the hardware for hand-held devices. The hardware architecture is constructed for the proposed scheme, which involves the aspects of parallelism in instructions and data. The processor consists of pipelined functional units to obtain the maximum throughput and higher speed of operation. The hardware model is analyzed for performance in terms throughput, speed and power. The results of hardware model indicate that the proposed architecture is suitable for power constrained implementations with higher data rate
Resumo:
This paper deals with reducing the waiting times of vehicles at the traffic junctions by synchronizing the traffic signals. Strategies are suggested for betterment of the situation at different time intervals of the day, thus ensuring smooth flow of traffic. The concept of single way systems are also analyzed. The situation is simulated in Witness 2003 Simulation package using various conventions. The average waiting times are reduced by providing an optimal combination for the traffic signal timer. Different signal times are provided for different times of the day, thereby further reducing the average waiting times at specific junctions/roads according to the experienced demands.
Resumo:
H.264 is a video codec standard which delivers high resolution video even at low bit rates. To provide high throughput at low bit rates hardware implementations are essential. In this paper, we propose hardware implementations for speed and area optimized DCT and quantizer modules. To target above criteria we propose two architectures. First architecture is speed optimized which gives a high throughput and can meet requirements of 4096x2304 frame at 30 frames/sec. Second architecture is area optimized and occupies 2009 LUTs in Altera’s stratix-II and can meet the requirements of 1080HD at 30 frames/sec.
Resumo:
Video streaming applications have hitherto been supported by single server systems. A major drawback of such a solution is that it increases the server load. The server restricts the number of clients that can be simultaneously supported due to limitation in bandwidth. The constraints of a single server system can be overcome in video streaming if we exploit the endless resources available in a distributed and networked system. We explore a P2P system for streaming video applications. In this paper we build a P2P streaming video (SVP2P) service in which multiple peers co-operate to serve video segments for new requests, thereby reducing server load and bandwidth used. Our simulation shows the playback latency using SVP2P is roughly 1/4th of the latency incurred when the server directly streams the video. Bandwidth consumed for control messages (overhead) is as low as 1.5% of the total data transfered. The most important observation is that the capacity of the SVP2P grows dynamically.
Resumo:
Diffuse optical tomography (DOT) using near-infrared (NIR) light is a promising tool for noninvasive imaging of deep tissue. This technique is capable of quantitative reconstructions of absorption coefficient inhomogeneities of tissue. The motivation for reconstructing the optical property variation is that it, and, in particular, the absorption coefficient variation, can be used to diagnose different metabolic and disease states of tissue. In DOT, like any other medical imaging modality, the aim is to produce a reconstruction with good spatial resolution and accuracy from noisy measurements. We study the performance of a phase array system for detection of optical inhomogeneities in tissue. The light transport through a tissue is diffusive in nature and can be modeled using diffusion equation if the optical parameters of the inhomogeneity are close to the optical properties of the background. The amplitude cancellation method that uses dual out-of-phase sources (phase array) can detect and locate small objects in turbid medium. The inverse problem is solved using model based iterative image reconstruction. Diffusion equation is solved using finite element method for providing the forward model for photon transport. The solution of the forward problem is used for computing the Jacobian and the simultaneous equation is solved using conjugate gradient search. The simulation studies have been carried out and the results show that a phase array system can resolve inhomogeneities with sizes of 5 mm when the absorption coefficient of the inhomogeneity is twice that of the background tissue. To validate this result, a prototype model for performing a dual-source system has been developed. Experiments are carried out by inserting an inhomogeneity of high optical absorption coefficient in an otherwise homogeneous phantom while keeping the scattering coefficient same. The high frequency (100 MHz) modulated dual out-of-phase laser source light is propagated through the phantom. The interference of these sources creates an amplitude null and a phase shift of 180° along a plane between the two sources with a homogeneous object. A solid resin phantom with inhomogeneities simulating the tumor is used in our experiment. The amplitude and phase changes are found to be disturbed by the presence of the inhomogeneity in the object. The experimental data (amplitude and the phase measured at the detector) are used for reconstruction. The results show that the method is able to detect multiple inhomogeneities with sizes of 4 mm. The localization error for a 5 mm inhomogeneity is found to be approximately 1 mm.
Resumo:
The Ulam’s problem is a two person game in which one of the player tries to search, in minimum queries, a number thought by the other player. Classically the problem scales polynomially with the size of the number. The quantum version of the Ulam’s problem has a query complexity that is independent of the dimension of the search space. The experimental implementation of the quantum Ulam’s problem in a Nuclear Magnetic Resonance Information Processor with 3 quantum bits is reported here.
Resumo:
Expanding energy access to the rural population of India presents a critical challenge for its government. The presence of 364 million people without access to electricity and 726 million who rely on biomass for cooking indicate both the failure of past policies and programs, and the need for a radical redesign of the current system. We propose an integrated implementation framework with recommendations for adopting business principles with innovative institutional, regulatory, financing and delivery mechanisms. The framework entails establishment of rural energy access authorities and energy access funds, both at the national and regional levels, to be empowered with enabling regulatory policies, capital resources and the support of multi-stakeholder partnership. These institutions are expected to design, lead, manage and monitor the rural energy interventions. At the other end, trained entrepreneurs would be expected to establish bioenergy-based micro-enterprises that will produce and distribute energy carriers to rural households at an affordable cost. The ESCOs will function as intermediaries between these enterprises and the international carbon market both in aggregating carbon credits and in trading them under CDM. If implemented, such a program could address the challenges of rural energy empowerment by creating access to modern energy carriers and climate change mitigation. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The prevailing hypercompetitive environment has made it essential for organizations to gather competitive intelligence from environmental scanning. The knowledge gained leads to organizational learning, which stimulates increased patent productivity. This paper highlights five practices that aid in developing patenting intelligence and empirically verifies to what extent this organizational learning leads to knowledge gains and financial gains realized from consequent higher patent productivity. The model is validated based on the perceptions of professionals with patenting experience from two of the most aggressively patenting sectors in today’s economy, viz., IT and pharmaceutical sectors (n=119). The key finding of our study suggests that although organizational learning from environmental scanning exists, the application of this knowledge for increasing patent productivity lacks due appreciation. This missing link in strategic analysis and strategy implementation has serious implications for managers which are briefly discussed in this paper.
Resumo:
This paper describes the different types of space vector based bus clamped PWM algorithms for three level inverters. A novel bus clamp PWM algorithm for low modulation indices region is also presented. The principles and switching sequences of all the types of bus clamped algorithms for high switching frequency are presented. Synchronized version of the PWM sequences for high power applications where switching frequency is low is also presented. The implementation details on DSP based digital controller and experimental results are presented. The THD of the output waveforms is studied for the entire operating region and is compared with the conventional space vector PWM technique. The bus clamped techniques can be used to reduce the switching losses or to improve the output voltage quality or both.. Different issues dominate depending on the type of application and power rating of the inverters. The results presented in this paper can be used for judicious use of the PWM techniques, which result in improved system efficiency and performance.
Resumo:
In todays era of energy crisis and global warming, hydrogen has been projected as a sustainable alternative to depleting CO2-emitting fossil fuels. However, its deployment as an energy source is impeded by many issues, one of the most important being storage. Chemical hydrogen storage materials, in particular B?N compounds such as ammonia borane, with a potential storage capacity of 19.6 wt?% H2 and 0.145 kg?H?2?L-1, have been intensively studied from the standpoint of addressing the storage issues. Ammonia borane undergoes dehydrogenation through hydrolysis at room temperature in the presence of a catalyst, but its practical implementation is hindered by several problems affecting all of the chemical compounds in the reaction scheme, including ammonia borane, water, borate byproducts, and hydrogen. In this Minireview, we exhaustively survey the state of the art, discuss the fundamental problems, and, where applicable, propose solutions with the prospect of technological applications.
Resumo:
The assignment of tasks to multiple resources becomes an interesting game theoretic problem, when both the task owner and the resources are strategic. In the classical, nonstrategic setting, where the states of the tasks and resources are observable by the controller, this problem is that of finding an optimal policy for a Markov decision process (MDP). When the states are held by strategic agents, the problem of an efficient task allocation extends beyond that of solving an MDP and becomes that of designing a mechanism. Motivated by this fact, we propose a general mechanism which decides on an allocation rule for the tasks and resources and a payment rule to incentivize agents' participation and truthful reports. In contrast to related dynamic strategic control problems studied in recent literature, the problem studied here has interdependent values: the benefit of an allocation to the task owner is not simply a function of the characteristics of the task itself and the allocation, but also of the state of the resources. We introduce a dynamic extension of Mezzetti's two phase mechanism for interdependent valuations. In this changed setting, the proposed dynamic mechanism is efficient, within period ex-post incentive compatible, and within period ex-post individually rational.
Resumo:
We present an open-source, realtime, embedded implementation of a foot-mounted, zero-velocity-update-aided inertial navigation system. The implementation includes both hardware design and software, uses off-the-shelf components and assembly methods, and features a standard USB interface. The software is written in C and can easily be modified to run user implemented algorithms. The hardware design and the software are released under permissive open-source licenses and production files, source code, documentation, and further resources are available at www.openshoe.org. The reproduction cost for a single unit is below $800, with the inertial measurement unit making up the bulk ($700). The form factor of the implementation is small enough for it to be integrated in the sole of a shoe. A performance evaluation of the system shows a position errors for short trajectories (<;100 [m]) of ± 0.2-1% of the traveled distance, depending on the shape of trajectory.
Resumo:
Space vector based PWM strategies for three-level inverters have a broader choice of switching sequences to generate the required reference vector than triangle comparison based PWM techniques. However, space vector based PWM involves numerous steps which are computationally intensive. A simplified algorithm is proposed here, which is shown to reduce the computation time significantly. The developed algorithm is used to implement synchronous and asynchronous conventional space vector PWM, synchronized modified space vector PWM and an asynchronous advanced bus-clamping PWM technique on a low-cost dsPIC digital controller. Experimental results are presented for a comparative evaluation of the performance of different PWM methods.
Resumo:
The linearization of the Drucker-Prager yield criterion associated with an axisymmetric problem has been achieved by simulating a sphere with the truncated icosahedron with 32 faces and 60 vertices. On this basis, a numerical formulation has been proposed for solving an axisymmetric stability problem with the usage of the lower-bound limit analysis, finite elements, and linear optimization. To compare the results, the linearization of the Mohr-Coulomb yield criterion, by replacing the three cones with interior polyhedron, as proposed earlier by Pastor and Turgeman for an axisymmetric problem, has also been implemented. The two formulations have been applied for determining the collapse loads for a circular footing resting on a cohesive-friction material with nonzero unit weight. The computational results are found to be quite convincing. (C) 2013 American Society of Civil Engineers.
Resumo:
We propose energy harvesting technologies and cooperative relaying techniques to power the devices and improve reliability. We propose schemes to (a) maximize the packet reception ratio (PRR) by cooperation and (b) minimize the average packet delay (APD) by cooperation amongst nodes. Our key result and insight from the testbed implementation is about total data transmitted by each relay. A greedy policy that relays more data under a good harvesting condition turns out to be a sub optimal policy. This is because, energy replenishment is a slow process. The optimal scheme offers a low APD and also improves PRR.