991 resultados para Semiconductor junctions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An organic semiconductor that can be mass produced is synthesized by end-capping quaterthiophene with naphthyl units (NaT4). An organic thin-film transistor (OTFT, see figure) has been fabricated using this organic semiconductor, and exhibits stability under ambient conditions with a mobility of up to 0.40 cm(2) V-1 s(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Nano-onions" with multifold alternating CdS/CdSe or CdSe/CdS structure have been synthesized via a two-phase approach. The influences of shell on photoluminescence (PL) quantum yields (QYs) and PL lifetimes are investigated and discussed. It is found that the outmost shell plays an important role in the PL QYs and PL lifetimes of the multishells "onion-like" nanocrystals. The PL QYs and PL lifetimes fluctuate regularly with CdSe and CdS shells. The PL QY increases when the nanocrystals have an outmost CdS shell; however, it decreases dramatically with the outmost CdSe shell. The trend of the change of PL lifetimes is consistent with that of the QYs. The crystal structure and composition of the novel nano-onions are characterized by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectra techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ring- and rod-shaped P4VP-b-PS-b-P4VP ( PS, polystyrene; P4VP, poly( 4-vinylpyridine)) triblock copolymer aggregates are used as templates to synthesize ZnS nanocrystals. Herein, PVP serves as both a stabilizing agent and a structure- directing agent. The resulting ZnS nanocrystals could be aligned along the corona of the copolymer aggregates in near-perfect structures through control of both the molar ratio of Zn2+ to P4VP and the reaction time. The diameter of the as-synthesized ZnS layer on the surface of polymer template is approximate 2 - 3 nm. High-resolution transmission electron microscopy images reveal that the ZnS particles are single crystal in a zinc blende structure. This method provides a simple, reproducible route at room temperature to prepare assembled hybrid polymer - semiconductor nanocrystal nanocomposites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three kinds of TiO2 nanostructured thin films and their CdS-sensitized films, consisting of different sizes of TiO2 nanoparticles prepared with different methods, have been investigated. The surface photovoltage spectra (SPS) measurements indicate that the density of surface states on TiO2 is likely dependent upon the details of prepared methods. TiO2 particles prepared from basic sol have more surface states than that prepared from acidic sol. When the TiO2 thin films prepared using the TiO2 sols were sensitized by CdS particles, the SPS responses relative to the surface states on TiO2 from 350 to 800 nm were decreased. The photoelectrochemical properties of nanostructured TiO2 electrodes suggest that the fewer the surface states and the smaller the particle sizes of TiO2, the larger the photocurrent response. For CdS sensitized TiO2 thin film electrode, it is shown that the semiconductor sensitization is an efficient way to decrease the influence of surface states on the charge separation, and can improve the intensity of photocurrent response. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental setup and the procedure for the laser resonant ionization mass spectrometry (RIMS) have been described. Both an optical spectrum and a mass spectum have been shown. The detection limit that can be reached by using this procedure has been estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ln(2)Mo(3)O(12) and Ce2Mo3O12.25 are reduced by hydrogen yielding Mo4+ oxides of the formula Ln(2)Mo(3)O(9) (Ln = La, Ce, Pr, Nd, Sm, Gd and Dy). The new compound Ce2Mo3O9 has the same structure as other Ln(2)Mo(3)O(9) compounds. All of the products are single phase materials and crystallize in a tetragonal scheelite type structure with Mo2O6 clusters. The IR spectra of the Ln(2)Mo(3)O(9) oxides show two absorption bands. These compounds are black n-type semiconductors, and exhibit Curie-Weiss Law behavior from 100K to 250K. Temperature dependence of the electrical properties of these compounds were measured for the first time, and a semiconductor-metal transition was found at about 250 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a resistively shunted semiconductor superlattice subject to a high-frequency electric field. Using a balance equation approach that incorporates the influence of the electric circuit, we determine numerically a range of amplitude and frequency of the ac field for which a dc bias and current are generated spontaneously and show that this region is likely accessible to current experiments. Our simulations reveal that the Bloch frequency corresponding to the spontaneous dc bias is approximately an integer multiple of the ac field frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the motion of ballistic electrons within a superlattice miniband under the influence of an alternating electric field. We show that the interaction of electrons with the self-consistent electromagnetic field generated by the electron current may lead to the transition from regular to chaotic dynamics. We estimate the conditions for the experimental observation of this deterministic chaos and discuss the similarities of the superlattice system with the other condensed matter and quantum optical systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the motion of electrons in a single miniband of a semiconductor superlattice driven by THz electric field polarized along the growth direction. We work in the semiclassical balance-equation model, including different elastic and inelastic scattering rates, and incorporating the self-consistent electric field generated by electron motion. We explore regions of complex dynamics, which can include chaotic behaviour and symmetry-breaking. We estimate the magnitudes of dc current and dc voltage that spontaneously appear in regions of broken-symmetry for parameters characteristic of modern semiconductor superlattices. This work complements PRL 80(1998)2669 [ cond-mat/9709026 ].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the spontaneous creation of a dc voltage across a strongly coupled semiconductor superlattice subjected to THz radiation. We show that the dc voltage may be approximately proportional either to an integer or to a half- integer multiple of the frequency of the applied ac field, depending on the ratio of the characteristic scattering rates of conducting electrons. For the case of an ac field frequency less than the characteristic scattering rates, we demonstrate the generation of an unquantized dc voltage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a 42.6 Gbit/s all-optical pattern recognition system which uses semiconductor optical amplifiers (SOAs). A circuit with three SOA-based logic gates is used to identify the presence of specific port numbers in an optical packet header.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor nanowires are pseudo 1-D structures where the magnitude of the semiconducting material is confined to a length of less than 100 nm in two dimensions. Semiconductor nanowires have a vast range of potential applications, including electronic (logic devices, diodes), photonic (laser, photodetector), biological (sensors, drug delivery), energy (batteries, solar cells, thermoelectric generators), and magnetic (spintronic, memory) devices. Semiconductor nanowires can be fabricated by a range of methods which can be categorised into one of two paradigms, bottom-up or top-down. Bottom-up processes can be defined as those where structures are assembled from their sub-components in an additive fashion. Top-down fabrication strategies use sculpting or etching to carve structures from a larger piece of material in a subtractive fashion. This seminar will detail a number of novel routes to fabricate semiconductor nanowires by both bottom-up and top-down paradigms. Firstly, a novel bottom-up route to fabricate Ge nanowires with controlled diameter distributions in the sub-20 nm regime will be described. This route details nanowire synthesis and diameter control in the absence of a foreign seed metal catalyst. Additionally a top-down route to nanowire array fabrication will be detailed outlining the importance of surface chemistry in high-resolution electron beam lithography (EBL) using hydrogen silsesquioxane (HSQ) on Ge and Bi2Se3 surfaces. Finally, a process will be described for the directed self-assembly of a diblock copolymer (PS-b-PDMS) using an EBL defined template. This section will also detail a route toward selective template sidewall wetting of either block in the PS-b-PDMS system, through tailored functionalisation of the template and substrate surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular tunnel junctions involve studying the behaviour of a single molecule sandwiched between metal leads. When a molecule makes contact with electrodes, it becomes open to the environment which can heavily influence its properties, such as electronegativity and electron transport. While the most common computational approaches remain to be single particle approximations, in this thesis it is shown that a more explicit treatment of electron interactions can be required. By studying an open atomic chain junction, it is found that including electron correlations corrects the strong lead-molecule interaction seen by the ΔSCF approximation, and has an impact on junction I − V properties. The need for an accurate description of electronegativity is highlighted by studying a correlated model of hexatriene-di-thiol with a systematically varied correlation parameter and comparing the results to various electronic structure treatments. The results indicating an overestimation of the band gap and underestimation of charge transfer in the Hartree-Fock regime is equivalent to not treating electron-electron correlations. While in the opposite limit, over-compensating for electron-electron interaction leads to underestimated band gap and too high an electron current as seen in DFT/LDA treatment. It is emphasised in this thesis that correcting electronegativity is equivalent to maximising the overlap of the approximate density matrix to the exact reduced density matrix found at the exact many-body solution. In this work, the complex absorbing potential (CAP) formalism which allows for the inclusion metal electrodes into explicit wavefunction many-body formalisms is further developed. The CAP methodology is applied to study the electron state lifetimes and shifts as the junction is made open.