977 resultados para Saccharomyces.
Resumo:
Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the autoaggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Bioenergia
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Biologia(especialidade Microbiologia), pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia
Resumo:
FEMS Yeast Research, Vol. 9, nº 4
Resumo:
The existence of molecular mechanisms of response, repair and adaptation, many of which are greatly conserved across nature, gives to the cell with the plasticity it requires to adjust to its ever-changing environment, a homeostatic event that is termed the stress response. In the budding yeast Saccharomyces cerevisiae there is a particular family of transcription factors, the Yap family, which has been shown to have a relevant role in yeast adaptation to several stress conditions. In particular, Yap1 is the major regulator of the transcriptional response to oxidative stress and Yap2 and Yap8 play important roles upon cadmium and arsenic exposure, respectively.(...)
Resumo:
Infrared spectroscopy, either in the near and mid (NIR/MIR) region of the spectra, has gained great acceptance in the industry for bioprocess monitoring according to Process Analytical Technology, due to its rapid, economic, high sensitivity mode of application and versatility. Due to the relevance of cyprosin (mostly for dairy industry), and as NIR and MIR spectroscopy presents specific characteristics that ultimately may complement each other, in the present work these techniques were compared to monitor and characterize by in situ and by at-line high-throughput analysis, respectively, recombinant cyprosin production by Saccharomyces cerevisiae. Partial least-square regression models, relating NIR and MIR-spectral features with biomass, cyprosin activity, specific activity, glucose, galactose, ethanol and acetate concentration were developed, all presenting, in general, high regression coefficients and low prediction errors. In the case of biomass and glucose slight better models were achieved by in situ NIR spectroscopic analysis, while for cyprosin activity and specific activity slight better models were achieved by at-line MIR spectroscopic analysis. Therefore both techniques enabled to monitor the highly dynamic cyprosin production bioprocess, promoting by this way more efficient platforms for the bioprocess optimization and control.
Resumo:
Dissertação apresentada para obtenção do grau de doutor em Biologia de Sistemas pelo Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa.
Resumo:
On solid substrates, yeast colonies pass through distinct developmental phases characterized by the changes in pH of their surroundings from acidic to nearly alkaline and vice versa. At the beginning of the alkali phase colonies start to produce ammonia, which functions as a quorum-sensing molecule inducing the reprogramming of cell metabolism. Such reprogramming includes, among others, the activation of several plasma membrane transporters and is connected with colony differentiation. In the present study, we show that colony cells can use two transport mechanisms to import lactic acid: a ‘saturable’ component of the transport, which requires the presence of a functional Jen1p transporter, and a ‘non-saturable’ component (diffusion) that is independent of Jen1p. During colony development, the efficiency of both transport components changes similarly in central and outer colonial cells. Although the lactate uptake capacity of central cells gradually decreases during colony development, the lactate uptake capacity of outer cells peaks during the alkali phase and is also kept relatively high in the second acidic phase. This lactate uptake profile correlates with the localization of the Jen1p transporter to the plasma membrane of colony cells. Both lactic acid uptake mechanisms are diminished in sok2 colonies where JEN1 expression is decreased. The Sok2p transcription factor may therefore be involved in the regulation of non-saturable lactic acid uptake in yeast colonies.
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
The antimicrobial activity of plant hidroethanolic extracts on bacteria Gram positive, Gram negative, yeasts, Mycobacterium tuberculosis H37 and Mycobacterium bovis was evaluated by using the technique of Agar diffusion and microdilution in broth. Among the extracts evaluated by Agar diffusion, the extract of Bidens pilosa leaf presented the most expressive average of haloes of growth inhibition to the microorganisms, followed by the extract of B. pilosa flower, of Eugenia pyriformis' leaf and seed, of Plinia cauliflora leaf which statistically presented the same average of haloes inhibitory formation on bacteria Gram positive, Gram negative and yeasts. The extracts of Heliconia rostrata did not present activity. Mycobacterium tuberculosis H37 and Mycobacterium bovis(BCG) appeared resistant to all the extracts. The susceptibility profile of Candida albicans and Saccharomyces cerevisiae fungi were compared to one another and to the Gram positive Bacillus subtilis, Enterococcus faecalis and the Gram negative Salmonella typhimurium bacteria (p > 0.05). The evaluation of cytotoxicity was carried out on C6-36 larvae cells of the Aedes albopictus mosquito. The extracts of stem and flower of Heliconia rostrata, leaf and stem of Plinia cauliflora, seed of Anonna crassiflora and stem, flower and root of B. pilosa did not present toxicity in the analyzed concentrations. The highest rates of selectivity appeared in the extracts of stem of A. crassiflora and flower of B. pilosa to Staphylococcus aureus, presenting potential for future studies about a new drug development.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Dissertação para obtenção do Grau de Mestre em Bioquímica Estrutural e Funcional
Resumo:
We evaluated the in vitro phagocytic function and the production of microbicidal oxygen radicals by monocytes and neutrophils of 9 Chagas' heart disease subjects with heart failure and 9 without the syndrome in comparison with 11 healthy subjects, by assessing phagocytosis of Saccharomyces cerevisiae and NBT reduction by peripheral blood phagocytes. Phagocytic index of monocytes of chagasics without heart failure was significantly 6.7 and 10.6 times lower than those of controls and chagasics with the congestive syndrome, respectively, due to a lesser engagement in phagocytosis and to an inability of these cells to ingest particles. Neutrophils also show in chagasics without heart failure PI 11.2 and 19.8 times lower than that of controls and chagasics with heart failure, respectively. The percent of NBT reduction was normal and similar for the three groups. Balanced opposite effects of cardiovascular and immune disturbances may be acting in Chagas' disease subjects with heart failure paradoxically recovering the altered phagocytic function.