743 resultados para Ruthenium.
Resumo:
The arene-ruthenium complex [Ru(eta(6)-C10H14)(dppf)Cl]PF6 (1) was used as a precursor for the syntheses of the [Ru(eta(6)-C10H14)(dppf)Br]PF6 (2), [Ru(eta(6)-C10H14)(dppf)I]PF6 (3). [Ru(eta(6)-C10H14)(dppf)SnF3]PF6 (4) and [Ru(eta(6)-C10H14)(dppf)Cl][SnCl3]center dot 0.45CH(2)Cl(2) (5) complexes by its reactions with KBr, Kl, SnF2 and SnCl2. respectively. All of the compounds were characterized by NMR, IR, Fe-57 and Sn-119-Mossbauer spectroscopy, and cyclic voltammetry. The single-crystal X-ray structure analysis of the [Ru(eta(6)-C10H14)(dppf)Cl] [SnCl3]center dot 0.45CH(2)Cl(2) complex revealed the expected piano-stool geometry. Cyclic voltammograms of the complexes showed only one quasi-reversible electrochemical process, involving the oxidation of Fe(II) and Ru(II) at the same potential, which was confirmed by exhaustive electrolysis experiments. Fe-57-Mossbauer parameters obtained for the complexes (1-5) were fitted with one doublet corresponding to a site of one iron(II). The Sn-119-Mossbauer parameters of the complex (4) indicate that tin is tetra covalent. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
OSCILLATORY DYNAMICS IN SYSTEMS CONTAINING BROMATE AND 1,4-CYCLOHEXANEDIONE IN ACIDIC MEDIA. I. THE EFFECT OF TEMPERATURE. We present in this work the influence of temperature on the dynamics of homogeneous chemical systems containing bromate and 1,4-cyclohexanedione (1,4-CHD) in acidic media. In particular, the following systems were studied: bromate/1,4-CHD/acid, bromate/1,4-CHD/ferroin/acid and bromate/1,4-CHD/trisbipyridine ruthenium/acid. Investigations were carried out by means of an electrochemical probe, at five temperatures between 5 and 45 degrees C. Activation energies (E-a) were estimated in different ways for the pre-oscillatory and oscillatory regimes. In any case, the E-a was found to depend on the catalyst, composition and initial concentrations. In addition, it was observed that ferroin and trisbipyridine ruthenium act as catalysts only during the transition between the induction period and oscillatory regime.
Resumo:
Complexes of the type {[(pyS)Ru(NH3)(4)](2)-mu-L}(n), where pyS = 4-mercaptopyridine, L = 4,4'-dithiodipyridine (pySSpy), pyrazine (pz) and 1,4-dicyanobenzene (DCB), and n = +4 and +5 for fully reduced and mixed-valence complexes, respectively, were synthesized and characterized. Electrochemical data showed that there is electron communication between the metal centers with comproportionation constants of 33.2, 1.30 x 10(8) and 5.56 x 10(5) for L = pySSpy, pz and DCB, respectively. It was also observed that the electronic coupling between the metal centers is affected by the p-back-bonding interaction toward the pyS ligand. Raman spectroscopy showed a dependence of the intensity of the vibrational modes on the exciting radiations giving support to the assignments of the electronic transitions. The degree of electron communication between the metal centers through the bridging ligands suggests that these systems can be molecular wire materials.
Resumo:
We present in this work the influence of temperature on the dynamics of homogeneous chemical systems containing bromate and 1,4-cyclohexanedione (1,4-CHD) in acidic media. In particular, the following systems were studied: bromate/1,4-CHD/acid, bromate/1,4-CHD/ferroin/acid and bromate/1,4-CHD/trisbipyridine ruthenium/acid. Investigations were carried out by means of an electrochemical probe, at five temperatures between 5 and 45 °C. Activation energies (Ea) were estimated in different ways for the pre-oscillatory and oscillatory regimes. In any case, the Ea was found to depend on the catalyst, composition and initial concentrations. In addition, it was observed that ferroin and trisbipyridine ruthenium act as catalysts only during the transition between the induction period and oscillatory regime.
Resumo:
Herein, it was investigated for the first time the electro-oxidation of ethanol on Pt and PtRu electrodeposits in acidic media by using in situ surface enhanced infrared absorption spectroscopy with attenuated total reflection (ATR-SEIRAS). The experimental setup circumvents the weak absorbance signals related to adsorbed species, usually observed for rough, electrodeposited surfaces, and allows a full description of the CO coverage with the potential for both catalysts. The dynamics of adsorption-oxidation of CO was accessed by ATR-SEIRAS experiments (involving four ethanol concentrations) and correlated with expressions derived from a simple kinetic model. Kinetic analysis suggests that the growing of the CO adsorbed layer is nor influenced by the presence of Ru neither by the concentration of ethanol. The results suggest that the C-C scission is not related to the presence of Ru and probably happens at Pt sites.
Resumo:
Im Vordergrund der vorliegenden Arbeit stand die Synthese konjugierter Oligomere und Polymere vom Phenylenvinylen-Typ, die Elektronenakzeptorsubstituenten tragen, sowie die Darstellung von Oligo(phenylenvinylen)en mit reaktiven Alkoxysilylgruppen, die durch Hydrolyse und Polykondensation zu amorphen und filmbildenden Materialien mit definierten Chromophoren umgewandelt werden können.Der Aufbau von Oligo(phenylenvinylen)en (OPVs) und Poly(phenylenvinylen)en (PPVs) mit Elektronenakzeptoren an den aromatischen Kernen wurde über die Heck-Reaktion substituierter Divinylaromaten mit Dibromaromaten durchgeführt. Dazu wurde eine einfache Synthese von Divinylaromaten mit Elektronenakzeptor-substituenten über die zweifache Vinylierung der 1,4-Dibromaromaten mit Ethen bei erhöhtem Druck entwickelt.OPVs haben sich als Emitter in lichtemittierenden Dioden (LEDs) bewährt, ein zentrales Problem bei der Verwendung wohldefinierter niedermolekularer Verbindungen ist deren Kristallisationstendenz. Eine hier angewendete Strategie zur Unterdrückung der Rekristallisation beinhaltet die Verknüpfung stilbenoider Chromophore über ein gemeinsames Silizium-Atom, zu dreidimensionalen Verbindungen. Alternativ können durch die Verknüpfung definierter Chromophore mit Alkoxysilanen Monomere erzeugt werden, die für den Aufbau von Kammpolymeren mit Polysiloxanhauptkette oder von Siloxan-Netzwerken genutzt werden können, um amorphe und filmbildende Materialien aufzubauen. Die Darstellung der Tetrakis-OPV-silane wurde über Horner-Olefinierungen stilbenoider Aldehyde mit einem tetraedrischen Phosphonester mit Si-Zentralatom durchgeführt. Die Verknüpfung stilbenoider Chromophore mit Alkoxysilanen zu polykondensierbaren Monomeren erfolgte über Heck-Reaktion oder gekreuzte Metathese Reaktionen. Eine Verknüpfung über flexible Spacer wird durch Kondensation der Oligostyrylbenzaldehyde mit Aminopropylethoxysilanen zu Schiffschen Basen und deren Reduktion mit Cyanoborhydrid zu sekundären Aminen erzeugt. Die Chromophore, OPVs oder Diaryloxadiazole, mit Kieselsäureestergruppen lassen sich durch saure Hydrolyse und Kondensation zu gut löslichen, fluoreszierenden Oligomeren umwandeln, die entweder ringöffnend polymerisierbar oder zu unlöslichen Filmen vernetzbar sind.
Resumo:
The main aims of my PhD research work have been the investigation of the redox, photophysical and electronic properties of carbon nanotubes (CNT) and their possible uses as functional substrates for the (electro)catalytic production of oxygen and as molecular connectors for Quantum-dot Molecular Automata. While for CNT many and diverse applications in electronics, in sensors and biosensors field, as a structural reinforcing in composite materials have long been proposed, the study of their properties as individual species has been for long a challenging task. CNT are in fact virtually insoluble in any solvent and, for years, most of the studies has been carried out on bulk samples (bundles). In Chapter 2 an appropriate description of carbon nanotubes is reported, about their production methods and the functionalization strategies for their solubilization. In Chapter 3 an extensive voltammetric and vis-NIR spectroelectrochemical investigation of true solutions of unfunctionalized individual single wall CNT (SWNT) is reported that permitted to determine for the first time the standard electrochemical potentials of reduction and oxidation as a function of the tube diameter of a large number of semiconducting SWNTs. We also established the Fermi energy and the exciton binding energy for individual tubes in solution and, from the linear correlation found between the potentials and the optical transition energies, one to calculate the redox potentials of SWNTs that are insufficiently abundant or absent in the samples. In Chapter 4 we report on very efficient and stable nano-structured, oxygen-evolving anodes (OEA) that were obtained by the assembly of an oxygen evolving polyoxometalate cluster, (a totally inorganic ruthenium catalyst) with a conducting bed of multiwalled carbon nanotubes (MWCNT). Here, MWCNT were effectively used as carrier of the polyoxometallate for the electrocatalytic production of oxygen and turned out to greatly increase both the efficiency and stability of the device avoiding the release of the catalysts. Our bioinspired electrode addresses the major challenge of artificial photosynthesis, i.e. efficient water oxidation, taking us closer to when we might power the planet with carbon-free fuels. In Chapter 5 a study on surface-active chiral bis-ferrocenes conveniently designed in order to act as prototypical units for molecular computing devices is reported. Preliminary electrochemical studies in liquid environment demonstrated the capability of such molecules to enter three indistinguishable oxidation states. Side chains introduction allowed to organize them in the form of self-assembled monolayers (SAM) onto a surface and to study the molecular and redox properties on solid substrates. Electrochemical studies on SAMs of these molecules confirmed their attitude to undergo fast (Nernstian) electron transfer processes generating, in the positive potential region, either the full oxidized Fc+-Fc+ or the partly oxidized Fc+-Fc species. Finally, in Chapter 6 we report on a preliminary electrochemical study of graphene solutions prepared according to an original procedure recently described in the literature. Graphene is the newly-born of carbon nanomaterials and is certainly bound to be among the most promising materials for the next nanoelectronic generation.
Resumo:
Untersuchungen zu ionenchemischen Reaktionen und Mobilitätsmessungen an schweren Elementen in einer Puffergaszelle Die vorgelegte Arbeit beschreibt vorbereitende Untersuchungen zu ionenchemischen Reaktionen und Mobilitätsmessungen schwerer Elemente (Z>100) in einer mit Argon gefüllten Puffergaszelle. Dazu wurden am Element Erbium (Z=68), dem chemischen Homolog von Fermium (Z=100), zunächst in einem Fourier-Transformations-Massenspektrometer (FT/MS) Reaktionen mit Sauerstoff (O2), Methan (CH4) und Butylen (C4H8) untersucht und deren Reaktionskonstanten zu k(Er+O2)=(3,6±0,3)10-10cm3/s, k(Er+C4H8)=(1,3±0,1)10-10cm3/s gemessen. Für die Reaktion Er++CH4 wurde eine Obergrenze der Reaktionskonstante von k(Er+CH4)?,310-15cm3/s bestimmt. Dieselben Reaktionen wurden anschließend in einer mit 60 mbar Argon gefüllten Puffergaszelle am Tandembeschleuniger des Max-Planck-Instituts für Kernphysik in Heidelberg studiert.Das in die Zelle eingeschossene Erbium wurde nach der Thermalisierung in einem zweistufigen Laserprozess resonant ionisiert. Diese Messungen führten zu gleichen Ergebnissen wie die FT/MS-Messungen (k(Er+O2)=3,3±0,4)10-10cm3/s, k(Er+CH4)?210-17cm3/s). Die Reaktion von Erbium mit Butylen wurde ebenfalls beobachtet, eine Reaktionskonstante konnte jedoch nicht bestimmt werden. Die Reaktion von Erbium mit Sauerstoff wurde auch mit den direkt in die Puffergaszelle eingeschossenen Ionen ohne Laserionisation untersucht. Eine reproduzierbare Reaktionskonstante konnte nicht bestimmt werden, mögliche Ursachen werden diskutiert.Aus der Driftzeit der Ionen im Puffergas können Ionenmobilitäten bestimmt werden. Dies erlaubt Rückschlüsse auf die Ionenradien und damit auch auf Bindungslängen in Molekülen. Zwischen Plutonium und Americium wurde bei einer Driftzeit von (1,88±0,01) ms ein Driftzeitunterschied von (0,07±0,02) ms gemessen und daraus eine relative Verringerung des Ionenradius von Americium gegenüber dem von Plutonium um (3,1±1,3)% bestimmt. Relativistische Rechnungen sagen für den atomaren Radius von Americium gegenüber Plutonium eine Kontraktion in gleicher Größenordnung voraus; für Ionenradien existieren zur Zeit noch keine Rechnungen. Aus den gemessenen Driftzeiten des Plutoniums von (1,85±0,01) ms und Plutoniumoxids von (2,38±0,01) ms wurde eine Zunahme des Ionenradius des Plutoniumoxids gegenüber dem Plutonium um (28±2)% bestimmt.Außerdem wurden Reaktionen von Ruthenium (Z=44) und Osmium (Z=76), beides chemische Homologe von Hassium (Z=108), mit Sauerstoff in der FT/MS-Apparatur untersucht, mit dem Ziel widersprüchliche Messungen der Reaktionskonstanten aufzuklären.
Resumo:
The aim of my Ph.D. research was to study the new synthetic ways for the production of adipic acid. Three different pathways were studied: i) oxidation of cyclohexanone with molecular oxygen using Keggin – heteropolycompounds as the catalyst, ii) Baeyer – Villiger oxidation of cyclohexanone with hydrogen peroxide in the presence of two different heterogeneous catalysts, titanium silicalite and silica grafted decatungstate, iii) two step synthesis of adipic acid starting from cyclohexene via 1,2-cyclohexanediol. The first step was catalyzed by H2WO4 in the presence of the phase transfer catalyst, the oxidant was hydrogen peroxide. The second step, oxidation of 1,2 – cyclohexanediol was performed in the presence of oxygen and the heterogeneous catalyst – ruthenium on alumina. The results of my research showed that: i) Oxidation of cyclohexanone with molecular oxygen using Keggin heteropolycompounds is possible, anyway the conversion of ketone is low and the selectivity to adipic acid is lowered by the consecutive reaction to from lower diacids. Moreover it was found out, that there are two mechanisms involved: redox type and radicalic chain-reaction autoxidation. The presence of the different mechanism is influenced by the reaction condition. ii) It is possible to perform thermally activated oxidation of cyclohexanone and obtain non negligible amount of the products (caprolactone and adipic acid). Performing the catalyzed reaction it was demonstrated that the choice of the reaction condition and of the catalyst plays a crucial role in the product selectivity, explaining the discrepancies between the literature and our research. iii) Interesting results can be obtained performing the two step oxidation of cyclohexene via 1,2-cyclohexanediol. In the presence of phase transfer catalyst it is possible to obtain high selectivity to alcohol with stoichiometric amount of oxidant. In the second step of the synthesis, the conversion of alcohol is rather low with modest selectivity to adipic acid
Resumo:
Two general strategies for the functionalization of metathesis polymers are presented in this dissertation. Introducing Sacrificial Synthesis, many of the limitations of ruthenium-catalyzed ROMP have been overcome. Here, the living ROMP polymer to be functionalized was turned into a diblock copolymer by polymerizing dioxepine monomers onto the desired first polymer block. The second block was then later removed to leave “half-a-dioxepin”, i.e. exactly one hydroxyl group, at the chain-end. The efficiency of Sacrificial Synthesis is also studied. Thiol groups were also placed by a sacrificial strategy based on cyclic thioacetals. 2-Phenyl-1,3-dithiepin could be polymerized and subsequently cleaved by hydrogenation with Raney-Nickel. The presence of thiol groups on the chain end has been proven by chemical means (derivatization) and by coating gold-nanoparticles. The second strategy, vinyl lactone quenchingv is a termination reaction based on vinyl esters. After a metathesis step, an inactive Fischer-type carbene is formed. Such acyl carbenes are unstable and self-decompose to set an inactive ruthenium complex and the functional group free without changing the reaction conditions. The two compounds vinylene carbonate and 3H-furanone gave rise to the placement of aldehydes and carboxylic acids at the polymer chain ends without the necessity to perform any deprotection steps after the functionalization. The development of those two functionalization methods led to several applications. By reacting hydroxyl-functionalized ROMP-polymers with norbornene acid, macromonomers were formed which were subsequently polymerized to the respective graft-copolymers. Also, the derivatization of the same functionalized polymers with propargylic acid gave rise to alkyne-functionalized polymers which were conjugated with azides. Furthermore, “ugly stars”, i.e. long-chain branched structures were synthesized by polycondensation of ABn-type macromonomers and telechelic polymers were accessed combining the described functionalization techniques.
Resumo:
In this work the hydrodechlorination of CF3OCFClCF2Cl to produce unsaturated CF3OCF=CF2 was studied over a series of supported metal catalysts. Currently this molecule is produced from the precursor CF3OCFClCF2Cl by dechlorination with zinc powder. An important cost on the economic and environmental balance is represents by the large amount of ZnCl2 produced and to be disposed of. A new approach, based on gas-phase hydrodechlorination over supported catalysts can lead to a new sustainable process. During the feasibility step of this project, substantially two kind of materials were studied: metals supported over activated carbon and Pd/Cu species supported over MCM-41 mesoporous silica. Observed catalytic performances were strongly dependent on the metal and support used. All carbon-supported Ru, Pd, and bimetallic catalysts are fairly active and yielded the target product CF3OCF=CF2, the higher selectivity being obtained with ruthenium- and palladium-based materials. Nevertheless, Ru-based catalysts showed poor stability and this deactivation may be attributed to the deposition of chlorinated organic species blocking the active sites. On the other hand, palladium-containing catalysts showed high stability. Ru/Pd and Pd/Cu bimetallic catalysts exhibited long-term selectivity and stability, highlighting the possibility for these materials to be employed in the CF3OCF=CF2 production process. During the second part of this thesis, a series of bimetallic meso-structured Pd/Cu MCM-41 catalysts were studies to overcome possible mass transfer limitations. The materials were obtained by different synthesis methods. The incorporation of Pd and Cu during MCM-41 synthesis, did not destroy the typical hexagonal array and ordered pore system of MCM-41. However, the calcination for the removal of the template provoked significant segregation of oxides. The impregnation leads to pore-occlusion and formation of Cu particles and large bimetallic PdCu species. Larger metal particles leads to lower CF3OCFClCF2Cl conversion, while the monometallic particles can decrease the selectivity to CF3OCF=CF2, fostering the dehalogenation to CF3OCH=CF2.
Resumo:
Topic of this thesis is the development of experiments behind the gas-filled separator TASCA(TransActinide Separator and Chemistry Apparatus) to study the chemical properties of the transactinide elements.rnIn the first part of the thesis, the electrodepositions of short-lived isotopes of ruthenium and osmium on gold electrodes were studied as model experiments for hassium. From literature it is known that the deposition potential of single atoms differs significantly from the potential predicted by the Nernst equation. This shift of the potential depends on the adsorption enthalpy of therndeposited element on the electrode material. If the adsorption on the electrode-material is favoured over the adsorption on a surface made of the same element as the deposited atom, the electrode potential is shifted to higher potentials. This phenomenon is called underpotential deposition.rnPossibilities to automatize an electro chemistry experiment behind the gas-filled separator were explored for later studies with transactinide elements.rnThe second part of this thesis is about the in-situ synthesis of transition-metal-carbonyl complexes with nuclear reaction products. Fission products of uranium-235 and californium-249 were produced at the TRIGA Mainz reactor and thermalized in a carbon-monoxide containing atmosphere. The formed volatile metal-carbonyl complexes could be transported in a gas-stream.rnFurthermore, short-lived isotopes of tungsten, rhenium, osmium, and iridium were synthesised at the linear accelerator UNILAC at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The recoiling fusion products were separated from the primary beam and the transfer products in the gas-filled separator TASCA. The fusion products were stopped in the focal plane of TASCA in a recoil transfer chamber. This chamber contained a carbon-monoxide – helium gas mixture. The formed metal-carbonyl complexes could be transported in a gas stream to various experimental setups. All synthesised carbonyl complexes were identified by nuclear decay spectroscopy. Some complexes were studied with isothermal chromatography or thermochromatography methods. The chromatograms were compared with Monte Carlo Simulations to determine the adsorption enthalpyrnon silicon dioxide and on gold. These simulations based on existing codes, that were modified for the different geometries of the chromatography channels. All observed adsorption enthalpies (on silcon oxide as well as on gold) are typical for physisorption. Additionally, the thermalstability of some of the carbonyl complexes was studied. This showed that at temperatures above 200 °C therncomplexes start to decompose.rnIt was demonstrated that carbonyl-complex chemistry is a suitable method to study rutherfordium, dubnium, seaborgium, bohrium, hassium, and meitnerium. Until now, only very simple, thermally stable compounds have been synthesized in the gas-phase chemistry of the transactindes. With the synthesis of transactinide-carbonyl complexes a new compound class would be discovered. Transactinide chemistry would reach the border between inorganic and metallorganic chemistry.rnFurthermore, the in-situ synthesised carbonyl complexes would allow nuclear spectroscopy studies under low background conditions making use of chemically prepared samples.
Resumo:
The aim of this PhD thesis is the investigation of the photophysical properties of materials that can be exploited in solar energy conversion. In this context, my research was mainly focused on carbon nanotube-based materials and ruthenium complexes. The first part of the thesis is devoted to carbon nanotubes (CNT), which have unique physical and chemical properties, whose rational control is of substantial interest to widen their application perspectives in many fields. Our goals were (i) to develop novel procedures for supramolecular dispersion, using amphiphilic block copolymers, (ii) to investigate the photophysics of CNT-based multicomponent hybrids and understand the nature of photoinduced interactions between CNT and selected molecular systems such as porphyrins, fullerenes and oligo (p-phynylenevinylenes). We established a new protocol for the dispersion of SWCNTs in aqueous media via non-covalent interactions and demonstrated that some CNT-based hybrids are suitable for testing in PV devices. The second part of the work is focussed on the study of homoleptic and heteroleptic Ru(II) complexes with bipyridine and extended phenanthroline ligands. Our studies demonstrated that these compounds are potentially useful as light harvesting systems for solar energy conversion. Both CNT materials and Ru(II) complexes have turned out to be remarkable examples of photoactive systems. The morphological and photophysical characterization of CNT-based multicomponent systems allowed a satisfactory rationalization of the photoinduced interactions between the individual units, despite several hurdles related to the intrinsic properties of CNTs that prevent, for instance, the utilization of laser spectroscopic techniques. Overall, this work may prompt the design and development of new functional materials for photovoltaic devices.
Resumo:
Small, smaller, nano - it is a milestone in the development of new materials and technologies. Nanoscience is now present in our daily lives: in the car industry with self-cleaning surfaces, in medicine with cancer therapies, even our clothes and cosmetics utilize nanoparticles. The number and variety of applications has been growing fast in recent years, and the possibilities seem almost infinite. Nanoparticles made of inorganic materials have found applications in new electronic technologies, and organic nanomaterials have been added to resins to produce very strong but light weight materials.rnThis work deals with the combination of organic and inorganic materials for the fabrication of new, functional hybrid systems. For that purpose, block copolymers were made with a long, solubility-enhancing and semiconducting block, and a short anchor block. They were synthesized by either RAFT polymerization or Siegrist polycondensation. For the second block, an active ester was grafted on and subsequently reacted with the anchor molecules in a polymer analogue reaction. The resulting block copolymers had different properties; poly(para-phenylene vinylene) showed self-assembly in organic solvents, which resulted in gelling of the solution. The fibers from a diluted solution were visible through microscopy. When polymer chains were attached to TiO2 nanorods, the hybrids could be integrated into polymer fibers. A light-induced charge separation was demonstrated through KPFM. The polymer charged positively and the charge could travel along the fibers for several hundred nanometers. Polymers made via RAFT polymerization were based on poly(vinyltriphenylamine). Ruthenium chromophores which carried anchor groups were attached to the second block. These novel block copolymers were then attached to ZnO nanorods. A light-induced charge separation was also demonstrated in this system. The ability to disperse inorganic nanoparticles within the film is another advantage of these block copolymers. This was shown with the example of CdSe tetrapods. Poly(vinyltriphenylamine dimer) with disulfide anchor groups was attached to CdSe tetrapods. These four-armed nanoparticles are supposed to show very high charge transport. A polymer without anchor groups was also mixed with the tetrapods in order to investigate the influence of the anchor groups. It was shown that without them no good films were formed and the tetrapods aggregated heavily in the samples. Additionally, a large difference in the film qualities and the aggregation of the tetrapods was found in the sample of the polymer with anchor groups, dependent on the tetrapod arm length and the polymer loading. These systems are very interesting for hybrid solar cells. This work also illustrates similar systems with quantum dots. The influence of the energy level of the polymer on the hole transport from the polymer to the quantum dots, as well as on the efficiency of QLEDs was studied. For this purpose two different polymers were synthesized with different HOMO levels. It was clearly shown that the polymer with the adjusted lower HOMO level had a better hole injection to the quantum dots, which resulted in more efficient light emitting diodes.rnThese systems all have in common the fact that novel, and specially designed polymers, were attached to inorganic nanocrystals. All of these hybrid materials show fascinating properties, and are helpful in the research of new materials for optoelectronic applications.
Resumo:
Anguzykline sind eine große Gruppe von Naturstoffen. Ihnen ist gemein, dass sie eine Benz[a]anthracen-Struktur besitzen oder dass sie in der Biosynthese aus einer Verbindung mit einem solchem Grundgerüst hervorgegangen sind. Viele Vertreter der Anguzykline sind bioaktive Substanzen mit insbesondere antibiotischer Wirkung. In dieser Arbeit wurde eine flexible, modulare Synthese für Anguzykline erarbeitet. Eine Schlüsselreaktion stellte die intramolekulare [2+2+2]-Zykloaddition aus Triinen zu Phthaliden dar. Die in dieser Umwandlung eingesetzten Triine enthalten eine Diin- und eine Monoinkomponente, die über eine Esterbindung miteinander verknüpft sind. Die intramolekulare [2+2+2]-Zyklotrimerisierung wurde an zwei verschiedenen Strukturen der Triinsysteme untersucht: Zum einen Triine, in denen Nona-2,8-diinsäuren mit 1-Aryl-propargylalkoholen verknüpft waren und zum anderen Substrate, in denen die Propargylsäureester von 1-Aryl-nona-2,8-diin-1-olen gebildet wurden. Für die Umsetzung wurden zwei verschiedene Katalysatoren verwendet. Neben dem Wilkinsonkatalysator wurde der Rutheniumkatalysator [Cp*RuCl(cod)] eingesetzt. Beide Katalysatoren sind für die Reaktion geeignet und ergänzen sich hinsichtlich der verschiedenen Triinsysteme. Die Phthalide dienten als Intermediate für den Aufbau eines Tetrahydrobenz[a]anthrachinon-Grundgerüst. Zum Aufbau dieser Struktur wurde eine Synthesesequenz zur Gerüstumlagerung vorgestellt und die Synthesemethode auf verschiedene Vertreter der Anguzyklin-Familie angewendet. Besonderes Augenmerk wurde auf die Synthese des Urdamycinon B gelegt, in dem das Grundgerüst C-glykosidisch mit einem Olivosesubstituenten verknüpft ist.