980 resultados para RCE-PD (resonant-cavity-enhanced photodiode)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treeing in low density polyethylene (LDPE) filled with alumina nanocomposite as well as unfilled LDPE samples stressed with 50 Hz ac voltage has been studied. The tree inception voltage was monitored for various samples with different nano-filler loadings and it is seen that there is an increase in tree inception voltage with filler loading in LDPE. Treeing pattern and tree growth duration for unfilled and nano-filled LDPE samples have also been studied. Different tree growth patterns as well as a slower tree growth with increase in filler loading in LDPE nanocomposites were observed. The observed slow propagation of tree growth with filler loading is attributed to the changes in the polymer crystalline morphology induced by the presence of nano-particles and the greater ability of the nanoparticles to resist discharge growth. SEM studies carried out to determine the morphology of unfilled and nano-filled LDPE showed an increase in lamellae packing in LDPE nanocomposites and this increased lamellar density leads to a reduction in the tree propagation rate. Partial discharge activities were also monitored during the electrical tree growth in both the unfilled and the nano-filled LDPE samples and were found to be significantly different. PD magnitude and the number of PD pulses per cycle were found to be lower with electrical tree growth duration in LDPE nanocomposites as compared to unfilled LDPE. The same trend was seen with increased filler loading also.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anatase phase of titania (TiO2) nano-photocatalysts was prepared using a modified sol gel process and thereafter embedded on carbon-covered alumina supports. The carbon-covered alumina (CCA) supports were prepared via the adsorption of toluene 2,4-diisocyanate (TDI) on the surface of the alumina. TDI was used as the carbon source for the first time for the carbon-covered alumina support system. The adsorption of TDI on alumina is irreversible; hence, the resulting organic moiety can undergo pyrolysis at high temperatures resulting in the formation of a carbon coating on the surface of the alumina. The TiO2 catalysts were impregnated on the CCA supports. X-ray diffraction analysis indicated that the carbon deposited on the alumina was not crystalline and also showed the successful impregnation of TiO2 on the CCA supports. In the Raman spectra, it could be deduced that the carbon was rather a conjugated olefinic or polycyclic hydrocarbons which can be considered as molecular units of a graphitic plane. The Raman analysis of the catalysed CCAs showed the presence of both the anatase titania and D and G band associated with the carbon of the CCAs. The scanning electron microscope micrographs indicated that the alumina was coated by a carbon layer and the energy dispersive X-ray spectra showed the presence of Al, O and C in the CCA samples, with the addition of Ti for the catalyst impregnated supports. The Brunauer Emmet and Teller surface area analysis showed that the incorporating of carbon on the alumina surface resulted in an increase in surface area, while the impregnation with TiO2 resulted in a further increase in surface area. However, a decrease in the pore volume and diameter was observed. The photocatalytic activity of the nanocatalysts was studied for the degradation of Rhodamine B dye. The CCA-TiO2 nanocatalysts were found to be more photocatalytically active under both visible and UV light irradiation compared to the free TIO2 nanocatalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pricing is an effective tool to control congestion and achieve quality of service (QoS) provisioning for multiple differentiated levels of service. In this paper, we consider the problem of pricing for congestion control in the case of a network of nodes with multiple queues and multiple grades of service. We present a closed-loop multi-layered pricing scheme and propose an algorithm for finding the optimal state dependent price levels for individual queues, at each node. This is different from most adaptive pricing schemes in the literature that do not obtain a closed-loop state dependent pricing policy. The method that we propose finds optimal price levels that are functions of the queue lengths at individual queues. Further, we also propose a variant of the above scheme that assigns prices to incoming packets at each node according to a weighted average queue length at that node. This is done to reduce frequent price variations and is in the spirit of the random early detection (RED) mechanism used in TCP/IP networks. We observe in our numerical results a considerable improvement in performance using both of our schemes over that of a recently proposed related scheme in terms of both throughput and delay performance. In particular, our first scheme exhibits a throughput improvement in the range of 67-82% among all routes over the above scheme. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, enhanced fluorescence from a silver film coated nanosphere templated grating is presented. Initially, numerical simulation was performed to determine the plasmon resonance wavelength by varying the thickness of the silver film on top of a monolayer of 400 nm nanospheres. The simulation results are verified experimentally and tested for enhancing fluorescence from fluorescein isothiocyanate whose excitation wavelength closely matches with the plasmon resonance wavelength of the substrate with 100 nm silver film over nanosphere. The 12 times enhancement in the intensity is attributed to the local field enhancement in addition to the excitation of surface plasmon polaritons along the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-ion- (Ag, Co, Ni and Pd) doped titania nanocatalysts were successfully deposited on glass slides by layer-by-layer (LbL) self-assembly technique using a poly(styrene sulfonate sodium salt) (PSS) and poly(allylamine hydrochloride) (PAH) polyelectrolyte system. Solid diffuse reflectance (SDR) studies showed a linear increase in absorbance at 416 nm with increase in the number of m-TiO2 thin films. The LbL assembled thin films were tested for their photocatalytic activity through the degradation of Rhodamine B under visible-light illumination. From the scanning electron microscope (SEM), the thin films had a porous morphology and the atomic force microscope (AFM) studies showed ``rough'' surfaces. The porous and rough surface morphology resulted in high surface areas hence the high photocatalytic degradation (up to 97% over a 6.5 h irradiation period) using visible-light observed. Increasing the number of multilayers deposited on the glass slides resulted in increased film thickness and an increased rate of photodegradation due to increase in the availability of more nanocatalysts (more sites for photodegradation). The LbL assembled thin films had strong adhesion properties which made them highly stable thus displaying the same efficiencies after five (5) reusability cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium carbide (TiC) is an electrically conducting material with favorable electrochemical properties. In the present studies, carbon-doped TiO2 (C-TiO2) has been synthesized from TiC particles, as well as TiC films coated on stainless steel substrate via thermal annealing under various conditions. Several C-TiO2 substrates are synthesized by varying experimental, conditions and characterized by UV-visible spectroscopy, photoluminescence, X-ray diffraction and X-ray photoelectron spectroscopic techniques. C-TiO2 in the dry state (in powder form as well as in film form) is subsequently used as a substrate for enhancing Raman signals corresponding to 4-mercaptobenzoic acid and 4-nitrothiophenol by utilizing chemical enhancement based on charge-transfer interactions. Carbon, a nonmetal dopant in TiO2, improves the intensities of Raman signals, compared, to undoped TiO2. Significant dependence of Raman intensity on carbon doping is observed. Ameliorated performance obtained using C-TiO2 is attributed to the presence of surface defects that originate due to carbon as a dopant, which, in turn,, triggers charge transfer between TiO2 and analyte. The C-TiO2 substrates are subsequently regenerated for repetitive use by illuminating an analyte-adsorbed substrate with visible light for a period of 5 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a technique to measure the absolute frequencies of optical transitions by using an evacuated Rb-stabilized ring-cavity resonator as a transfer cavity. The absolute frequency of the Rb D-2 line (at 780 nm) used to stabilize the cavity is known and allows us to determine the absolute value of the unknown frequency. We study wavelength-dependent errors due to dispersion at the cavity mirrors by measuring the frequency of the same transition in the Cs D-2 line (at 852 nm) at three cavity lengths. The spread in the values shows that dispersion errors are below 30 kHz, corresponding to a relative precision of 10(-10). We give an explanation for reduced dispersion errors in the ring-cavity geometry by calculating errors due to the lateral shift and the phase shift at the mirrors, and show that they are roughly equal but occur with opposite signs. We have earlier shown that diffraction errors (due to Guoy phase) are negligible in the ring-cavity geometry compared to a linear cavity; the reduced dispersion error is another advantage. Our values are consistent with measurements of the same transition using the more expensive frequency-comb technique. Our simpler method is ideally suited for measuring hyperfine structure, fine structure, and isotope shifts, up to several hundreds of gigahertz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth mechanism of phases and atomic mechanism of diffusion are discussed in the Pd-Sn system. The Kirkendall marker plane location indicates that the PdSn4 phase grows because of diffusion of Sn. Atomic arrangement in the crystal indicates that Sn can diffuse through its own sublattice but Pd cannot diffuse unless antisites are present. The negligible diffusion of Pd indicates the absence of Pd antisites. The activation energy value indicates that the contribution from grain boundary diffusion cannot be neglected although experiments were conducted in the homologous temperature range of 0.7-0.79.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report resonant Raman scattering of MoS2 layers comprising of single, bi, four and seven layers, showing a strong dependence on the layer thickness. Indirect band gap MoS2 in bulk becomes a direct band gap semiconductor in the monolayer form. New Raman modes are seen in the spectra of single- and few-layer MoS2 samples which are absent in the bulk. The Raman mode at similar to 230 cm(-1) appears for two, four and seven layers. This mode has been attributed to the longitudinal acoustic phonon branch at the M point (LA(M)) of the Brillouin zone. The mode at similar to 179 cm(-1) shows asymmetric character for a few-layer sample. The asymmetry is explained by the dispersion of the LA(M) branch along the G-M direction. The most intense spectral region near 455 cm(-1) shows a layer-dependent variation of peak positions and relative intensities. The high energy region between 510 and 645 cm(-1) is marked by the appearance of prominent new Raman bands, varying in intensity with layer numbers. Resonant Raman spectroscopy thus serves as a promising non invasive technique to accurately estimate the thickness of MoS2 layers down to a few atoms thick. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the activity of Ti0.84Pt0.01Fe0.15O2-delta and Ti0.73Pd0.02Fe0.25O2-delta catalysts towards the CO oxidation and water gas shift (VMS) reaction. Both the catalysts were synthesized in the nano crystalline form by a low temperature sonochemical method and characterized by different techniques such as XRD, FT-Raman, TEM, FT-IR, XPS and BET surface analyzer. H-2-TPR results corroborate the intimate contact between noble metal and Fe ions in the both catalysts that facilitates the reducibility of the support. In the absence of feed CO2 and H-2, nearly 100% conversion of CO to CO2 with 100% H-2 selectivity was observed at 300 degrees C and 260 degrees C respectively, for Ti0.84Pt0.01Fe0.15O2-delta and Ti0.73Pd0.02Fe0.25O2-delta catalyst. However, the catalytic performance of Ti0.73Pd0.02Fe0.25O2-delta deteriorates in the presence of feed CO2 and H-2. The change in the support reducibility is the primary reason for the significant increase in the activity for CO oxidation and WGS reaction. The effect of Fe addition was more significant in Ti0.73Pd0.02Fe0.25O2-delta than Ti0.84Pt0.01Fe0.15O2-delta. Based on the spectroscopic evidences and surface phenomena, a hybrid reaction scheme utilizing both surface hydroxyl groups and the lattice oxygen was hypothesized over these catalysts for WGS reaction. The mechanisms based on the formate and redox pathway were used to fit the ldnetic data. The analysis of experimental data shows the redox mechanism is the dominant pathway over these catalysts. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-frequency sounds are advantageous for long-range acoustic signal transmission, but for small animals they constitute a challenge for signal detection and localization. The efficient detection of sound in insects is enhanced by mechanical resonance either in the tracheal or tympanal system before subsequent neuronal amplification. Making small structures resonant at low sound frequencies poses challenges for insects and has not been adequately studied. Similarly, detecting the direction of long-wavelength sound using interaural signal amplitude and/or phase differences is difficult for small animals. Pseudophylline bushcrickets predominantly call at high, often ultrasonic frequencies, but a few paleotropical species use lower frequencies. We investigated the mechanical frequency tuning of the tympana of one such species, Onomarchus uninotatus, a large bushcricket that produces a narrow bandwidth call at an unusually low carrier frequency of 3.2. kHz. Onomarchus uninotatus, like most bushcrickets, has two large tympanal membranes on each fore-tibia. We found that both these membranes vibrate like hinged flaps anchored at the dorsal wall and do not show higher modes of vibration in the frequency range investigated (1.5-20. kHz). The anterior tympanal membrane acts as a low-pass filter, attenuating sounds at frequencies above 3.5. kHz, in contrast to the high-pass filter characteristic of other bushcricket tympana. Responses to higher frequencies are partitioned to the posterior tympanal membrane, which shows maximal sensitivity at several broad frequency ranges, peaking at 3.1, 7.4 and 14.4. kHz. This partitioning between the two tympanal membranes constitutes an unusual feature of peripheral auditory processing in insects. The complex tracheal shape of O. uninotatus also deviates from the known tube or horn shapes associated with simple band-pass or high-pass amplification of tracheal input to the tympana. Interestingly, while the anterior tympanal membrane shows directional sensitivity at conspecific call frequencies, the posterior tympanal membrane is not directional at conspecific frequencies and instead shows directionality at higher frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-ion (Ag, Co, Ni, and Pd) doped TiO2 nanocatalysts were successfully embedded on carbon-covered alumina supports. The CCA-embedded catalysts were crystalline and had a high surface area compared to the free metal-ion doped titania nanocatalysts while they still retained the anatase phase of the core TiO2. These catalysts were photocatalytically active under solar light irradiation. Rhodamine B was used as a model pollutant and the reactivity followed a pseudo-first-order reaction kinetics. The reaction rate of the CCA-supported catalysts was Pd > Ag > Co > Ni. Among the ratios of the CCA:catalyst used, it was found that the 1:1 ratio had the fastest reaction rate, followed by the 1:2 ratio, while the 2:1 ratio exhibited the lowest reaction rate. The CCA/metal-ion doped titania were found to have photocatalytic activities comparable with those of CCA-supported titania.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoelectric and ex situ electric-field induced structural studies were carried out on closely spaced compositions in the morphotropic phase boundary region of (1 - x) PbTiO3-(x)BiScO3. While the common approach of zero field structural analysis failed to provide a unique relationship between the anomalous piezoresponse of x = 0.3725 and structural factor(s), ex situ study of electric-field induced structural changes revealed that the composition exhibiting the highest piezoelectric response is the one which also exhibits significantly enhanced polarizability of the lattices of both coexisting (monoclinic and tetragonal) phases. The enhanced lattice polarizability manifests as a significant fraction of the monoclinic phase transforming irreversibly to the tetragonal phase after electric poling. DOI: 10.1103/PhysRevB.87.064106

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured Pd-modified Ni/CeO2 catalyst was synthesized in a single step by solution combustion method and characterized by XRD, TEM, XPS, TPR and BET surface analyzer techniques. The catalytic performance of this compound was investigated by performing the water gas shift (WGS) and catalytic hydrogen combustion (CHC) reaction. The present compound is highly active and selective (100%) toward H-2 production for the WGS reaction. A lack of CO methanation activity is an important finding of present study and this is attributed to the ionic substitution of Pd and Ni species in CeO2. The creation of oxide vacancies due to ionic substitution of aliovalent ions induces dissociation of H2O that is responsible for the improved catalytic activity for WGS reaction. The combined H-2-TPR and XPS results show a synergism exists among Pd, Ni and ceria support. The redox reaction mechanism was used to correlate experimental data for the WGS reaction and a mechanism involving the interaction of adsorbed H-2 and O-2 through the hydroxyl species was proposed for CHC reaction. The parity plot shows a good correspondence between the experimental and predicted reaction rates. (c) 2012 Elsevier B.V. All rights reserved.