834 resultados para Pelvic inflammatory disease


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocular inflammation is one of the leading causes of blindness and loss of vision. Human uveitis is a complex and heterogeneous group of diseases characterized by inflammation of intraocular tissues. The eye may be the only organ involved, or uveitis may be part of a systemic disease. A significant number of cases are of unknown etiology and are labeled idiopathic. Animal models have been developed to the study of the physiopathogenesis of autoimmune uveitis due to the difficulty in obtaining human eye inflamed tissues for experiments. Most of those models are induced by injection of specific photoreceptors proteins (e.g., S-antigen, interphotoreceptor retinoid-binding protein, rhodopsin, recoverin, phosducin). Non-retinal antigens, including melanin-associated proteins and myelin basic protein, are also good inducers of uveitis in animals. Understanding the basic mechanisms and pathogenesis of autoimmune ocular diseases are essential for the development of new treatment approaches and therapeutic agents. The present review describes the main experimental models of autoimmune ocular inflammatory diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tissue changes that occur in Chagas disease are related to the degree of oxidative stress and antioxidant capacity of affected tissue. Studies with vitamin C supplementation did not develop oxidative damage caused by Chagas disease in the host, but other studies cite the use of peroxiredoxins ascorbate - dependent on T. cruzi to offer protection against immune reaction. Based on these propositions, thirty "Swiss" mice were infected with T. cruzi QM1 strain and treated with two different vitamin C doses in order to study the parasitemia evolution, histopathological changes and lipid peroxidation biomarkers during the acute phase of Chagas disease. The results showed that the parasite clearance was greater in animals fed with vitamin C overdose. There were no significant differences regarding the biomarkers of lipid peroxidation and inflammatory process or the increase of myocardium in animals treated with the recommended dosage. The largest amount of parasite growth towards the end of the acute phase suggests the benefit of high doses of vitamin C for trypomastigotes. The supplementation doesn't influence the production of free radicals or the number of amastigote nests in the acute phase of Chagas disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Thiobarbituric acid-reactive substance is a marker of oxidative stress and has cytotoxic and genotoxic actions. C- reactive protein is used to evaluate the acute phase of inflammatory response. OBJECTIVES: To assess the thiobarbituric acid-reactive substance and C-reactive protein levels during extracorporeal circulation in patients submitted to cardiopulmonary bypass. METHODS: Twenty-five consecutive surgical patients (16 men and nine women; mean age 61.2 ± 9.7 years) with severe coronary artery disease diagnosed by angiography scheduled for myocardial revascularization surgery with extracorporeal circulation were selected. Blood samples were collected immediately before initializing extracorporeal circulation, T0; in 10 minutes, T10; and in 30 minutes, T30. RESULTS: The thiobarbituric acid-reactive substance levels increased after extracorporeal circulation (P=0.001), with average values in T0=1.5 ± 0.07; in T10=5.54 ± 0.35; and in T30=3.36 ± 0.29 mmoles/mg of serum protein. The C-reactive protein levels in T0 were negative in all samples; in T10 average was 0.96 ± 0.7 mg/dl; and in T30 average was 0.99 ± 0.76 mg/dl. There were no significant differences between the dosages in T10 and T30 (P=0.83). CONCLUSIONS: C-reactive protein and thiobarbituric acid-reactive substance plasma levels progressively increased during extracorporeal circulation, with maximum values of thiobarbituric acid-reactive substance at 10 min and of Creactive protein at 30 min. It suggests that there are an inflammatory response and oxidative stress during extracorporeal circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, new treatment approaches have been developed to target the host component of periodontal disease. This review aims at providing updated information on host-modulating therapies, focusing on treatment strategies for inhibiting signal transduction pathways involved in inflammation. Pharmacological inhibitors of MAPK, NFκB and JAK/STAT pathways are being developed to manage rheumatoid arthritis, periodontal disease and other inflammatory diseases. Through these agents, inflammatory mediators can be inhibited at cell signaling level, interfering on transcription factors activation and inflammatory gene expression. Although these drugs offer great potential to modulate host response, their main limitations are lack of specificity and developments of side effects. After overcoming these limitations, adjunctive host modulating drugs will provide new therapeutic strategies for periodontal treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past few years, many studies on the association between celiac disease and inflammatory bowel disease have been reported. The genetic origin of this association has prompted research that searches for a common link for the concomitant manifestation of these pathologies. Clinical studies aim not only to demonstrate this relation, but also to establish the epidemiological frequencies among affected individuals and their relatives as compared to the general population. The similar clinical symptoms, difficulties, diagnoses, and therapeutics are still a challenge, since this association is unknown to most coloproctologists, thereby culminating in treatments and surgical procedures with no benefits for the patient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Severe dengue virus (DENV) disease is associated with extensive immune activation, characterized by a cytokine storm. Previously, elevated lipopolysaccharide (LPS) levels in dengue were found to correlate with clinical disease severity. In the present cross-sectional study we identified markers of microbial translocation and immune activation, which are associated with severe manifestations of DENV infection. Methods: Serum samples from DENV-infected patients were collected during the outbreak in 2010 in the State of Sa˜o Paulo, Brazil. Levels of LPS, lipopolysaccharide binding protein (LBP), soluble CD14 (sCD14) and IgM and IgG endotoxin core antibodies were determined by ELISA. Thirty cytokines were quantified using a multiplex luminex system. Patients were classified according to the 2009 WHO classification and the occurrence of plasma leakage/shock and hemorrhage. Moreover, a (non-supervised) cluster analysis based on the expression of the quantified cytokines was applied to identify groups of patients with similar cytokine profiles. Markers of microbial translocation were linked to groups with similar clinical disease severity and clusters with similar cytokine profiles. Results: Cluster analysis indicated that LPS levels were significantly increased in patients with a profound pro-inflammatory cytokine profile. LBP and sCD14 showed significantly increased levels in patients with severe disease in the clinical classification and in patients with severe inflammation in the cluster analysis. With both the clinical classification and the cluster analysis, levels of IL-6, IL-8, sIL-2R, MCP-1, RANTES, HGF, G-CSF and EGF were associated with severe disease. Conclusions: The present study provides evidence that both microbial translocation and extensive immune activation occur during severe DENV infection and may play an important role in the pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolic syndrome (MetS) is an inflammatory state associated with high coronary disease risk. Inflammation and adaptive immunity modulate atherosclerosis and plaque instability. We examined early changes in anti-oxidized lowdensity lipoprotein (LDL) (anti-oxLDL) autoantibodies (Abs) in patients with MetS after an acute coronary syndrome (ACS). Patients of both genders (n=116) with MetS were prospectively included after an acute yocardial infarction (MI) or hospitalization due to unstable angina. Anti-oxLDL Abs (IgG class) were assayed at baseline, three and six weeks after ACS. The severity of coronary disease was evaluated by the Gensini score. We observed a decrease in anti-oxLDL Abs titers (p<0.002 vs. baseline), mainly in males (p=0.01), in those under 65 y (p=0.03), and in subjects with Gensini score above median (p=0.04). In conclusion, early decrease in circulating anti-oxLDL Abs is associated with coronary disease severity among subjects with MetS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of protein expression profiles for biomarker discovery in serum and in mammalian cell populations needs the continuous improvement and combination of proteins/peptides separation techniques, mass spectrometry, statistical and bioinformatic approaches. In this thesis work two different mass spectrometry-based protein profiling strategies have been developed and applied to liver and inflammatory bowel diseases (IBDs) for the discovery of new biomarkers. The first of them, based on bulk solid-phase extraction combined with matrix-assisted laser desorption/ionization - Time of Flight mass spectrometry (MALDI-TOF MS) and chemometric analysis of serum samples, was applied to the study of serum protein expression profiles both in IBDs (Crohn’s disease and ulcerative colitis) and in liver diseases (cirrhosis, hepatocellular carcinoma, viral hepatitis). The approach allowed the enrichment of serum proteins/peptides due to the high interaction surface between analytes and solid phase and the high recovery due to the elution step performed directly on the MALDI-target plate. Furthermore the use of chemometric algorithm for the selection of the variables with higher discriminant power permitted to evaluate patterns of 20-30 proteins involved in the differentiation and classification of serum samples from healthy donors and diseased patients. These proteins profiles permit to discriminate among the pathologies with an optimum classification and prediction abilities. In particular in the study of inflammatory bowel diseases, after the analysis using C18 of 129 serum samples from healthy donors and Crohn’s disease, ulcerative colitis and inflammatory controls patients, a 90.7% of classification ability and a 72.9% prediction ability were obtained. In the study of liver diseases (hepatocellular carcinoma, viral hepatitis and cirrhosis) a 80.6% of prediction ability was achieved using IDA-Cu(II) as extraction procedure. The identification of the selected proteins by MALDITOF/ TOF MS analysis or by their selective enrichment followed by enzymatic digestion and MS/MS analysis may give useful information in order to identify new biomarkers involved in the diseases. The second mass spectrometry-based protein profiling strategy developed was based on a label-free liquid chromatography electrospray ionization quadrupole - time of flight differential analysis approach (LC ESI-QTOF MS), combined with targeted MS/MS analysis of only identified differences. The strategy was used for biomarker discovery in IBDs, and in particular of Crohn’s disease. The enriched serum peptidome and the subcellular fractions of intestinal epithelial cells (IECs) from healthy donors and Crohn’s disease patients were analysed. The combining of the low molecular weight serum proteins enrichment step and the LCMS approach allowed to evaluate a pattern of peptides derived from specific exoprotease activity in the coagulation and complement activation pathways. Among these peptides, particularly interesting was the discovery of clusters of peptides from fibrinopeptide A, Apolipoprotein E and A4, and complement C3 and C4. Further studies need to be performed to evaluate the specificity of these clusters and validate the results, in order to develop a rapid serum diagnostic test. The analysis by label-free LC ESI-QTOF MS differential analysis of the subcellular fractions of IECs from Crohn’s disease patients and healthy donors permitted to find many proteins that could be involved in the inflammation process. Among them heat shock protein 70, tryptase alpha-1 precursor and proteins whose upregulation can be explained by the increased activity of IECs in Crohn’s disease were identified. Follow-up studies for the validation of the results and the in-depth investigation of the inflammation pathways involved in the disease will be performed. Both the developed mass spectrometry-based protein profiling strategies have been proved to be useful tools for the discovery of disease biomarkers that need to be validated in further studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MTDL (multi-target-directed ligand) design strategy is used to develop single chemical entities that are able to simultaneously modulate multiple targets. The development of such compounds might disclose new avenues for the treatment of a variety of pathologies (e.g. cancer, AIDS, neurodegenerative diseases), for which an effective cure is urgently needed. This strategy has been successfully applied to Alzheimer’s disease (AD) due to its multifactorial nature, involving cholinergic dysfunction, amyloid aggregation, and oxidative stress. Despite many biological entities have been recognized as possible AD-relevant, only four achetylcholinesterase inhibitors (AChEIs) and one NMDA receptor antagonist are used in therapy. Unfortunately, such compounds are not disease-modifying agents behaving only as cognition enhancers. Therefore, MTDL strategy is emerging as a powerful drug design paradigm: pharmacophores of different drugs are combined in the same structure to afford hybrid molecules. In principle, each pharmacophore of these new drugs should retain the ability to interact with its specific site(s) on the target and, consequently, to produce specific pharmacological responses that, taken together, should slow or block the neurodegenerative process. To this end, the design and synthesis of several examples of MTDLs for combating neurodegenerative diseases have been published. This seems to be the more appropriate approach for addressing the complexity of AD and may provide new drugs for tackling the multifactorial nature of AD, and hopefully stopping its progression. According to this emerging strategy, in this work thesis different classes of new molecular structures, based on the MTDL approach, have been developed. Moreover, curcumin and its constrained analogs have currently received remarkable interest as they have a unique conjugated structure which shows a pleiotropic profile that we considered a suitable framework in developing MTDLs. In fact, beside the well-known direct antioxidant activity, curcumin displays a wide range of biological properties including anti-inflammatory and anti-amyloidogenic activities and an indirect antioxidant action through activation of the cytoprotective enzyme heme oxygenase (HO-1). Thus, since many lines of evidence suggest that oxidative stess and mitochondria impairment have a cental role in age-related neurodegenerative diseases such as AD, we designed mitochondria-targeted antioxidants by connecting curcumin analogs to different polyamine chains that, with the aid of electrostatic force, might drive the selected antioxidant moiety into mitochondria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. Microembolization during the carotid artery revascularization procedure may cause cerebral lesions. Elevated C-Reactive Protein (hsCRP), Vascular endothelial growth factor (VEGF) and serum amyloid A protein (SAA) exert inflammatory activities thus promoting carotid plaque instability. Neuron specific enolase (NSE) is considered a marker of cerebral injury. Neoangiogenesis represents a crucial step in atherosclerosis, since neovessels density correlates with plaque destabilization. However their clinical significance on the outcome of revascularization is unknown. This study aims to establish the correlation between palque vulnerabilty, embolization and histological or serological markers of inflammation and neoangiogenesis. Methods. Serum hsCRP, SAA, VEGF, NSE mRNA, PAPP-A mRNA levels were evaluated in patients with symptomatic carotid stenosis who underwent filter-protected CAS or CEA procedure. Cerebral embolization, presence of neurologicals symptoms, plaque neovascularization were evaluated testing imaging, serological and histological methods. Results were compared by Fisher’s, Student T test and Mann-Whitney U test. Results. Patients with hsCRP<5 mg/l, SAA<10mg/L and VEGF<500pg/ml had a mean PO of 21.5% versus 35.3% (p<0.05). In either group, embolic material captured by the filter was identified as atherosclerotic plaque fragments. Cerebral lesions increased significantly in all patients with hsCRP>5mg/l and SAA>10mg/l (16.5 vs 2.8 mean number, 3564.6 vs 417.6 mm3 mean volume). Discussion. High hsCRP, SAA and VEGF levels are associated with significantly greater embolization during CAS and to the vulnerabiliy of the plaque. This data suggest CAS might not be indicated as a method of revascularization in this specific group of patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to the amyloid hypothesis, Alzheimer’s disease (AD) is caused by aberrant production or clearance of the amyloid-β (Aβ) peptides, and in particular of the longer more aggregation-prone Aβ42. The Aβ peptides are generated through successive proteolytic cleavage of the amyloid precursor protein (APP) by the β-site APP cleaving enzyme (BACE) and γ-secretase. γ-secretase produces Aβ peptides with variable C-termini ranging from Aβ34 to Aβ48, presumably by sequential trimming of longer into shorter peptides. γ-secretase is a multiprotein complex consisting of at least four different proteins and the presenilin proteins (PS1 or PS2) contain the catalytic center of the complex. In 2001 several non-steroidal anti-inflammatory drugs were identified as the founding members of a new class of γ-secretase modulators (GSMs) that can selectively reduce production of Aβ42. Concomitantly, these GSMs increase Aβ38 production indicating closely coordinated generation of Aβ42 and Aβ38 and a potential precursor-product relationship between these peptides. GSMs seem to exert their activity by direct modulation of γ-secretase. Support for this hypothesis is drawn from the finding that some PS mutations associated with early-onset familial AD (FAD) can modulate the cellular response to GSMs and to γ-secretase inhibitors (GSIs), which inhibit production of all Aβ peptides and are known to directly interact with PS. A particularly interesting FAD PS mutation is PS1-ΔExon9, a complex deletion mutant that blocks endoproteolysis of PS1 and renders cells completely non-responsive to GSMs. Studies presented in this thesis show that the diminished response of PS1-ΔExon9 to GSMs is mainly caused by its lack of endoproteolytic cleavage. Furthermore, we were able to demonstrate that a reduced response to GSMs and GSIs is not limited to PS1-ΔExon9 but is a common effect of aggressive FAD-associated PS1 mutations. Surprisingly, we also found that while the Aβ42 response to GSMs is almost completely abolished by these PS1 mutations, the accompanying Aβ38 increase was indistinguishable to wild-type PS1. Finally, the reduced response to GSIs was confirmed in a mouse model with transgenic expression of an aggressive FAD-associated PS1 mutation as a highly potent GSI failed to reduce Aβ42 levels in brain of these mice. Taken together, our findings provide clear evidence for independent generation of Aβ42 and Aβ38 peptides, and argue that the sequential cleavage model might be an oversimplification of the molecular mechanism of γ-secretase. Most importantly, our results highlight the significance of genetic background in drug discovery efforts aimed at γ-secretase, and indicate that the use of cellular models with transgenic expression of FAD-associated PS mutations might confound studies of the potency and efficacy of GSMs and GSIs. Therefore, such models should be strictly avoided in the ongoing preclinical development of these promising and potentially disease-modifying therapeutics for AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is a chronic and progressive neurodegenerative disorder and according to the WHO it is estimated that 36 millions of people worldwide currently suffer from AD. Genetic and environmental factors interact in a complex interplay that might affect pathogenic mechanisms leading to age-related neurodegeneration. The hypothesis is that the presence of allelic polymorphisms in selected genes affecting individual brain susceptibility to infection by the herpes virus family during aging, may contribute to neuronal loss, inflammation and amyloid deposition. Herpes virus family show features relevant to AD, since they infect a large proportion of human population, develop a latent form persisting for several years, are difficult to eliminate by immune responses especially when latency has been established and are able to infect neurons. The association between AD and herpes viruses infection has been investigated. In particular the investigation focused on CMV, EBV and HHV-6 in DNA samples from peripheral blood of a large cohort of patients with clinical diagnosis of AD and age matched CTR, from a longitudinal population study, and DNA samples from brain tissue of patients with neuropathological diagnosis of definitive AD. An association between the presence of EBV and HHV-6 DNA from PBL positivity with the cognitive deterioration and progression to AD has been focused. Moreover, IgG plasma levels in CTR and AD to these viruses were tested. CMV and EBV IgG plasma levels were higher in elderly subjects that developed clinical AD at the end of the five year follow up. Our findings support the notion that persistent cycles of latency and reactivation of herpes viruses may contribute to impair systemic immune response and induce altered inflammatory process that in turn affect cognitive decline during aging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammatory Bowel Diseases (IBD) are intestinal chronic relapsing diseases which ethiopathogenesis remains uncertain. Several group have attempted to study the role of factors involved such as genetic susceptibility, environmental factors such as smoke, diet, sex, immunological factors as well as the microbioma. None of the treatments available satisfy several criteria at the same time such as safety, long-term remission, histopatological healing, and specificity. We used two different approaches for the development of new therapeutic treatment for Inflammatory Bowel Disease. The first is focused on the understanding of the potential role of functional food and nutraceuticals nutrients in the treatment of IBD. To do so, we investigated the role of Curcuma longa in the treatment of chemical induced colitis in mice model. Since Curcma Longa has been investigated for its antinflammatory role related to the TNFα pathway as well investigators have reported few cases of patients with ulcerative colites treated with this herbs, we harbored the hypothesis of a role of Curcuma Longa in the treatment f IBD as well as we decided to assess its role in intestinal motility. The second part is based on an immunological approach to develop new drugs to induce suppression in Crohn’s disease or to induce mucosa immunity such as in colonrectal tumor. The main idea behind this approach is that we could manipulate relevant cell-cell interactions using synthetic peptides. We demonstrated the role of the unique interaction between molecules expressed on intestinal epithelial cells such as CD1d and CEACAM5 and on CD8+ T cells. In normal condition this interaction has a role for the expansion of the suppressor CD8+ T cells. Here, we characterized this interaction, we defined which are the epitope involved in the binding and we attempted to develop synthetic peptides from the N domain of CEACAM5 in order to manipulate it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die allogene hämatopoetische Stammzelltransplantation ist bereits seit mehreren Jahrzehnten zur Therapie von Leukämien und anderen malignen Erkrankungen etabliert, aber ihre Effektivität wird durch Graft-versus-Host Reaktionen weiterhin deutlich eingeschränkt. Um die zu Grunde liegenden Mechanismen besser zu verstehen und Möglichkeiten zur Modulation zu untersuchen, wurden in dieser Arbeit verschiedene Ansätze verfolgt.rnRegulatorische T-Zellen sind in der Lage allogene T-Zell-Antworten, wie sie auch bei einer GvH-Erkrankung auftreten zu supprimieren. Es konnte gezeigt werden, dass dies unabhängig von Interleukin-10 geschieht, dafür jedoch ein kontaktabhängiger Mechanismus eine wichtige Rolle spielt. Dabei wird cAMP von Treg über Gap-Junctions in allogene Dendritische Zellen übertragen und deren Aktivierung dadurch verhindert. Versuche zur Modulation dieses Mechanismus mithilfe von Phosphodiesterase-Inhibitoren haben gezeigt, dass diese nicht nur die suppressiven Fähigkeiten von Treg verbessern, sondern ebenfalls direkt auf die T-Zellen einwirken, die schließlich die GvH-Erkrankung auslösen. Diese Ergebnisse konnten in vivo bestätigt werden und zeigen somit einen möglichen Ansatz hin zu einer kombinierten zellulären und pharmakologischen Therapie von GvH-Erkrankungen. Ein großer Vorteil dabei wäre, dass bereits eine Palette an PDE-Inhibitoren in der Klinik zur Verfügung steht.rnInterleukin-10 ist ein immunsuppressives und anti-inflammatorisches Zytokin, dem bei der Regulation des Immunsystems eine wichtige Rolle zukommt. Wie in dieser und anderen Arbeiten gezeigt, ist diese Funktion von IL-10 auch bei GvH-Erkrankungen essentiell. Ein Ziel war es daher, die Zellpopulationen, die für die Produktion des Zytokins verantwortlich sind, zu identifizieren. Mittels einer IL-10 Reporter-Maus konnten B-Zellen vom Spender, wie auch vom Empfänger als IL-10 Produzenten ausgemacht werden. Darüberhinaus zeigen die so gefundenen Zellen auch einen typischen Phänotyp für sog. immunregulatorische B-Zellen. Transplantationsexperimente mit Mäusen, die einen B-Zell-spezifischen Knock-out für IL-10 tragen, konnten die Relevanz der B Zellen als IL-10 Produzenten in vivo belegen.rnDendritische Zellen sind sehr potente Antigenpräsentierende Zellen und somit in der Lage GvH-Reaktionen zu induzieren. Überraschenderweise ist das Überleben von Versuchsmäusen, denen alle DC oder auch nur die BATF3-abhängige Subpopulation der CD8α+ DC fehlt, nicht besser als das des WT, sondern sogar deutlich schlechter. Dies geht einher mit entsprechenden Veränderungen im Zytokinmilieu der peripheren lymphatischen Organe. Bei Abwesenheit der CD8α+ DC sind die Zellen der mesenterialen Lymphknoten nach dem Konditionierungsprotokoll stärkere Stimulatoren für allogene T-Zell-Proliferation, was eine Erklärung für die stärkere GvH-Erkrankung ist. Eine Erklärung für diese Befunde liefert die verringerte Anzahl an Treg, die nach einer Transplantation in Abwesenheit der CD8α+ DC zu beobachten ist.rnDie aufgezeigten immunsupressiven Mechanismen stellen gute Ansatzpunkte dar, um GvH-Erkrankungen besser zu verstehen und damit die Effektivität der allogenen hämatopoetischen Stammzelltransplantation zu verbessern.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Switzerland was the first country to approve certolizumab pegol (Cimzia, CZP) for the treatment of patients with moderate to severe Crohn's disease (CD) in September 2007. This phase IV study aimed to evaluate the efficacy and safety of CZP in a Swiss multicenter cohort of practice-based patients.