937 resultados para POLYCRYSTALLINE PLATINUM-ELECTRODES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

International audience

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work metal - Microwave Plasma CVD diamond Schottky devices were studied. The current density vs. applied voltage reveals rectification ratios up to 10(4) at \ +/- 2V \. Under illumination an inversion and increase of the rectification is observed. The carrier density is 10(15) cm(-3) and the ideality factors near 1.5. The dark current vs. temperature shows that below 150 K the bulk transport is controlled by a hopping process with a density of defects of 10(16) cm(-3). For higher temperatures an extrinsic ionisation with activation energy of 0.3 eV takes place. The correlation with the polycrystalline nature of the samples is focused.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015 Silveira et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalysts consisting in platinum supported on cerium oxide highly dispersed on activated carbon, with a Pt loading of 1 wt.% and ceria loadings of 5, 10 and 20 wt.% have been prepared by impregnation method and characterized by several techniques (N2 adsorption at 77 K, ICP, XRD, H2-TPR and XPS). Their catalytic behavior has been evaluated in the total oxidation of ethanol and toluene after reduction at 473 K. The obtained results show that the prepared catalysts have better performances than platinum supported on bulk CeO2. The best catalytic performance was obtained for 10 wt.% ceria loading, likely due to an optimum synergistic interaction between highly dispersed cerium oxide and platinum particles. Pt-10Ce/C achieves total conversion of ethanol and toluene to CO2 at 433 K and 453 K, respectively, and shows no deactivation during a test for 100 h. Under humid conditions (relative humidity, RH, of 40 and 80%), the activity was only slightly influenced due to the hydrophobic character of the activated carbon support, which prevents the adsorption of water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to study the activities of ceria–zirconia and copper/ceria–zirconia catalysts, comparing with a commercial platinum/alumina catalyst, for soot combustion reaction under different gas atmospheres and loose contact mode (simulating diesel exhaust conditions), in order to analyse the kinetics and to deduce mechanistic implications. Activity tests were performed under isothermal and TPR conditions. The NO oxidation to NO2 was studied as well. It was checked that mass transfer limitations were not influencing the rate measurements. Global activation energies for the catalysed and non-catalysed soot combustion were calculated and properly discussed. The results reveal that ceria-based catalysts greatly enhance their activities under NOx/O2 between 425 °C and 450 °C, due to the “active oxygen”-assisted soot combustion. Remarkably, copper/ceria–zirconia shows a slightly higher soot combustion rate than the Pt-based catalyst (under NOx/O2, at 450 °C).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work metal - Microwave Plasma CVD diamond Schottky devices were studied. The current density vs. applied voltage reveals rectification ratios up to 10(4) at \ +/- 2V \. Under illumination an inversion and increase of the rectification is observed. The carrier density is 10(15) cm(-3) and the ideality factors near 1.5. The dark current vs. temperature shows that below 150 K the bulk transport is controlled by a hopping process with a density of defects of 10(16) cm(-3). For higher temperatures an extrinsic ionisation with activation energy of 0.3 eV takes place. The correlation with the polycrystalline nature of the samples is focused.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An excess resistivity has been observed in thin film polycrystalline samples of SnTe with low carrier concentration and is attributed to the additional scattering due to the phonon softening associated with the structural phase transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical properties of polycrystalline gas sensors are analyzed by d.c. and a.c. measurements. d.c. electrical conductivity values compared with those obtained by admittance spectroscopy methods help to obtain a detailed 'on line' analysis of conductivity-modulated gas sensors. The electrical behaviour of grain boundaries is obtained and a new design of sensors can be achieved by enhancing the activity of surface states in the detecting operation. A Schottky barrier model is used to explain the grain boundary action under the presence of surrounding gases. The height of this barrier is a function of gas concentration due to the trapping of excess charge generated by gas adsorption at the interface. A comparison between this dependence, and a plot of the real and imaginary components of the admittance versus frequency at different gas concentrations, provides information on the different parameters that play a role in the conduction mechanisms. These methods have been applied to the design of a CO sensor based on tin oxide films for domestic purposes, the characteristics of which are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Master, Environmental Studies) -- Queen's University, 2016-09-09 11:52:31.446

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analysed the use of microneedle-based electrodes to enhance electroporation of mouse testis with DNA vectors for production of transgenic mice. Different microneedle formats were developed and tested, and we ultimately used electrodes based on arrays of 500 μm tall microneedles. In a series of experiments involving injection of a DNA vector expressing Green Fluorescent Protein (GFP) and electroporation using microneedle electrodes and a commercially available voltage supply, we compared the performance of flat and microneedle electrodes by measuring GFP expression at various timepoints after electroporation. Our main finding, supported by both experimental and simulated data, is that needles significantly enhanced electroporation of testis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manganese oxide is a promising active material for supercapacitors (SCs) with pseudocapacitance due to its high capacitance and its environmentally friendly character. This paper deals with the preparation of electrodes for supercapacitors consisting of manganese oxide supported onto graphite by electrophoretic deposition. Manganese oxide powders were characterized and dispersed in water by controlling the colloidal and rheological behavior in order to obtain stable suspensions. Optimized manganese oxide suspensions were deposited onto graphite electrodes by electrophoretic deposition. The deposited mass per unit area in the electrodes was optimized by controlling the applied current density and the deposition time. It has been demonstrated that the introduction of a binder helped to improve the adherence to graphite; otherwise the deposit thickness obtained by EPD is limited and no films can be obtained by simply dipping. These conditions allowed us to obtain more homogeneous deposits with higher specific energy than without binder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient energy storage holds the key to reducing waste energy and enabling the use of advanced handheld electronic devices, hydrid electric vehicles and residential energy storage. Recently, Li-ion batteries have been identified and employed as energy storage devices due to their high gravimetric and volumetric energy densities, in comparison to previous technologies. However, more research is required to enhance the efficiency of Li-ion batteries by discovering electrodes with larger electrochemical discharge capacities, while maintaining electrochemical stability. The aims of this study are to develop new microwave-assisted synthesis routes to nanostructured insertion cathodes, which harbor a greater affinity for lithium extraction and insertion than bulk materials. Subsequent to this, state-of-the-art synchrotron based techniques have been employed to understand structural and dynamic behaviour of nanostructured cathode materials during battery cell operation. In this study, microwave-assisted routes to a-LiFePO4, VO2(B), V3O7, H2V3O8 and V4O6(OH)4 have all been developed. Muon spin relaxation has shown that the presence of b-LiFePO4 has a detrimental effect on the lithium diffusion properties of a-LiFePO4, in agreement with first principles calculations. For the first time, a-LiFePO4 nanostructures have been obtained by employing a deep eutectic solvent reaction media showing near theoretical capacity (162 mAh g–1). Studies on VO2(B) have shown that the discharge capacity obtained is linked to the synthesis method. Electrochemical studies of H2V3O8 nanowires have shown outstanding discharge capacities (323 mAh g–1 at 100 mA g–1) and rate capability (180 mAh g–1 at 1 A g–1). The electrochemcial properties of V4O6(OH)4 have been investigated for the first time and show a promising discharge capacity of (180 mAh g–1). Lastly, in situ X-ray absorption spectroscopy has been utilised to track the evolution of the oxidation states in a-LiFePO4, VO2(B) and H2V3O8, and has shown these can all be observed dynamically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the limited resources of lithium, new chemistries based on the abundant and cheap sodium and even zinc have been proposed for the battery market. Prussian Blue Analogues (PBAs) are a class of compounds which have been explored for many different applications because of their intriguing electrochemical and magnetic properties. Manganese and titanium hexacyanoferrate (MnHCF and TiHCF) belong to the class of PBAs. In this work, MnHCF and TiHCF electrodes were synthetized, cycled with cyclic voltammetry (CV) in different setups and subsequently, the surfaces were characterized with X-ray Photoelectron Spectroscopy (XPS). The setups chosen for CVs were coin cell with zinc aqueous solution for the MnHCF series, three-electrode cell and symmetric coin cell with sodium aqueous solution for the TiHCF series. The electrodes were treated with different number of cycles to evaluate the chemical changes and alterations in oxidation states during cycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing market of electrical cars, portable electronics, photovoltaic systems..etc. requires the development of efficient, low-cost, and low environmental impact energy storage devices (ESDs) including batteries and supercapacitors.. Due to their extended charge-discharge cycle, high specific capacitance, and power capabilities supercapacitors are considered among the most attractive ESDs. Over the last decade, research and development in supercapacitor technology have accelerated: thousands of articles have been published in the literature describing the electrochemical properties of the electrode materials and electrolyte in addition to separators and current collectors. Carbon-based supercapacitor electrodes materials have gained increasing attention due to their high specific surface area, good electrical conductivity, and excellent stability in harsh environments, as well as other characteristics. Recently, there has been a surge of interest in activated carbon derived from low-cost abundant sources such as biomass for supercapacitor electrode materials. Also, particular attention was given to a major challenging issue concerning the substitution of organic solutions currently used as electrolytes due to their highest electrochemical stability window even though their high cost, toxicity, and flammability. In this regard, the main objective of this thesis is to investigate the performances of supercapacitors using low cost abundant safe, and low environmental impact materials for electrodes and electrolytes. Several prototypes were constructed and tested using natural resources through optimization of the preparation of appropriate carbon electrodes using agriculture by-products waste or coal (i.e. Argan shell or Anthracite from Jerrada). Such electrodes were tested using several electrolyte formulations (aqueous and water in salt electrolytes) beneficing their non-flammability, lower cost, and environmental impact; the characteristics that provide a promising opportunity to design safer, inexpensive, and environmentally friendly devices compared to organic electrolytes.