871 resultados para NONLINEAR PARABOLIC-SYSTEMS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this paper is to apply methods from optimal control theory, and from the theory of dynamic systems to the mathematical modeling of biological pest control. The linear feedback control problem for nonlinear systems has been formulated in order to obtain the optimal pest control strategy only through the introduction of natural enemies. Asymptotic stability of the closed-loop nonlinear Kolmogorov system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation, thus guaranteeing both stability and optimality. Numerical simulations for three possible scenarios of biological pest control based on the Lotka-Volterra models are provided to show the effectiveness of this method. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents the control and synchronization of chaos by designing linear feedback controllers. The linear feedback control problem for nonlinear systems has been formulated under optimal control theory viewpoint. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations were provided in order to show the effectiveness of this method for the control of the chaotic Rossler system and synchronization of the hyperchaotic Rossler system. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Dynamical systems of the billiard type are of fundamental importance for the description of numerous phenomena observed in many different fields of research, including statistical mechanics, Hamiltonian dynamics, nonlinear physics, and many others. This Focus Issue presents the recent progress in this area with contributions from the mathematical as well as physical stand point. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730155]
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving constrained nonlinear optimization problems. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach.
Resumo:
This research presents a systematic procedure to obtain estimates, via extended Lyapunov functions, of attracting sets of a class of nonlinear systems, as well as an estimate of their stability regions. The considered class of nonlinear systems, called in this note the extended Lurie system, consists of nonlinear systems like those of the Lurie problem where one of the nonlinear functions can violate the sector conditions of the Lurie problem around the origin. In case of nonautonomous systems the concept of absolute stability is extended and uniform estimates of the attracting set are obtained. Two classical nonlinear systems, the forced duffing equation and the Van der Pol system, are analyzed with the proposed procedure.
Resumo:
This article presents a new approach to minimize the losses in electrical power systems. This approach considers the application of the primal-dual logarithmic barrier method to voltage magnitude and tap-changing transformer variables, and the other inequality constraints are treated by augmented Lagrangian method. The Lagrangian function aggregates all the constraints. The first-order necessary conditions are reached by Newton's method, and by updating the dual variables and penalty factors. Test results are presented to show the good performance of this approach.
Resumo:
The influence of La2O3, Pr2O3 and CeO2 on a new class of polycrystalline ceramics with nonlinear properties based on SnO2, was investigated. La2O3 and Pr2O3 were found to precipitate at the grain boundary region, causing a considerable increase in the nonlinear behavior. It was found that CeO2 forms a solid solution in the bulk but. unlike La2O3 and Pr2O3, it does not increase the nonlinear behavior. A higher nonlinear coefficient of similar to80 was obtained for La2O3-doped SnO2-based systems. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
This work is intended to report on optical measurements in a parabolic quantum well with a two dimensional-three dimensional electron gas. Photoluminescence results show broad spectra which are related to emission involving several subbands on conduction band with the fundamental level of the valence band. This assumption is based on the behavior of the PL peak position and the full width at half maximum in the function of the incident power intensity. (C) 2002 Elsevier B.V. B.V. All rights reserved.