A family of stadium-like billiards with parabolic boundaries under scaling analysis


Autoria(s): Livorati, Andre L. P.; Loskutov, Alexander; Leonel, Edson Denis
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

30/09/2013

20/05/2014

30/09/2013

20/05/2014

29/04/2011

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Some chaotic properties of a family of stadium-like billiards with parabolic focusing components, which is described by a two-dimensional nonlinear area-preserving map, are studied. Critical values of billiard geometric parameters corresponding to a sudden change of the maximal Lyapunov exponent are found. It is shown that the maximal Lyapunov exponent obtained for chaotic orbits of this family is scaling invariant with respect to the control parameters describing the geometry of the billiard. We also show that this behavior is observed for a generic one-parameter family of mapping with the nonlinearity given by a tangent function.

Formato

12

Identificador

http://dx.doi.org/10.1088/1751-8113/44/17/175102

Journal of Physics A-mathematical and Theoretical. Bristol: Iop Publishing Ltd, v. 44, n. 17, p. 12, 2011.

1751-8113

http://hdl.handle.net/11449/24882

10.1088/1751-8113/44/17/175102

WOS:000289145700005

Idioma(s)

eng

Publicador

Iop Publishing Ltd

Relação

Journal of Physics A: Mathematical and Theoretical

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article