Nonlinear optimization using a modified Hopfield model


Autoria(s): da Silva, I. N.; de Arruda, LVR; do Amaral, W. C.; IEEE
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/01/1998

Resumo

Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving constrained nonlinear optimization problems. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach.

Formato

1629-1633

Identificador

http://dx.doi.org/10.1109/IJCNN.1998.686022

IEEE World Congress on Computational Intelligence. New York: IEEE, p. 1629-1633, 1998.

http://hdl.handle.net/11449/33563

10.1109/IJCNN.1998.686022

WOS:000074493400298

Idioma(s)

eng

Publicador

Institute of Electrical and Electronics Engineers (IEEE)

Relação

IEEE World Congress on Computational Intelligence

Direitos

closedAccess

Tipo

info:eu-repo/semantics/conferencePaper