788 resultados para Mercury film ultramicroelectrode
Resumo:
Visual field losses associated with mercury (Hg) exposure have only been assessed in patients exposed to methylmercury. Here we evaluate the automated visual field in 35 ex-workers (30 males; 44.20+/-5.92 years) occupationaly exposed to mercury vapor and 34 controls (21 males; 43.29+/-8.33 years). Visual fields were analyzed with the Humphrey Field Analyzer II (model 750i) using two tests: the standard automated perimetry (SAP, white-on-white) and the short wavelength automated perimetry (SWAP, blue-on-yellow) at 76 locations within a 27 degrees central visual field. Results were analyzed as the mean of the sensitivities measured at the fovea, and at five successive concentric rings, of increasing eccentricity, within the central field. Compared to controls, visual field sensitivities of the experimental group measured using SAP were lower for the fovea as well as for all five eccentricity rings (p<0.05). Sensitivities were significantly lower in the SWAP test (p<0.05) for four of the five extra-foveal eccentricity rings; they were not significant for the fovea (p = 0.584) or for the 15 degrees eccentricity ring (p = 0.965). These results suggest a widespread reduction of sensitivity in both visual field tests. Previous reports in the literature describe moderate to severe concentric constriction of the visual field in subjects with methylmercury intoxication measured manually with the Goldman perimeter. The present results amplify concerns regarding potential medical risks of exposure to environmental mercury sources by demonstrating significant and widespread reductions of visual sensitivity using the more reliable automated perimetry. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Contrast sensitivity (CS) was evaluated in 41 former workers from a lamp manufacturing plant who were on disability retirement due to exposure to mercury and 14 age-matched controls. The CS was measured monocularly using the sweep visual evoked potential (sVEP) paradigm at 6 spatial frequencies (0.2, 0.8, 2.0, 4.0, 15.0, and 30 cpd). Statistical difference (p < 0.05) was found between the controls and the patient right and left eyes for 2.0 and 4.0 cpd. According the results in those spatial frequencies the eyes were classified in best and worst. Statistical differences were found between the controls and the best eyes for 2.0 and 4.0 cpd and for 0.8, 2.0, and 4.0 cpd for their worst eyes. No correlation was found between CS results and the time of exposure (mean 8.9 yr +/- 4.1), time away from the mercury source (mean = 6.0 yr +/- 3.9), urinary mercury level at the time of work (mean = 40.6 mu g/g +/-36.3) or with the mercury level at the CS measurement time (mean = 1.6 mu g/g +/-1.1). We show the first evidence of a permanent impairment in CS measured objectively with the sVEP. Our data complement the previous psychophysical works reporting a diffuse impairment in the CS function showing a CS reduction in the low to middle spatial frequencies. In conclusion, non-reversible CS impairment was found in occupational exposure to mercury vapor. We suggest that CS measurement should be included in studies of the mercury effects of occupational exposure. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Amazonian gold mining activity results in human exposure to mercury vapor. We evaluated the visual system of two Amazonian gold miners (29 and 37 years old) by recording the transient pattern electroretinogram (tPERG) and transient pattern visual evoked potential (tPVEP). We compared these results with those obtained from a regional group of control subjects. For both tPERG and tPVEP, checkerboards with 0.5 or 2 cycles per degree (cpd) of spatial frequency were presented in a 16 degrees squared area, 100% Michelson contrast, 50cd/m(2) mean luminance, and 1 Hz square-wave pattern-reversal presentation. Two averaged waveforms (n = 240 sweeps, Is each) were monocularly obtained for each subject in each condition. Both eyes were monocularly tested only in gold miners. Normative data were calculated using a final pooled waveforin with 480 sweeps. The first gold miner, LCS, had normal tPERG responses. The second one, RNP, showed low tPERG (P50 component) amplitudes at 0.5cpd for both eyes, outside the normative data, and absence of response at 2 cpd for his right eye. Delayed tPVEP responses (P 100 component) were found at 2 cpd for LCS but the implicit times were inside the normative data. Subject RNP also showed delayed tPVEP responses (all components), but only the implicit time obtained with his right eye was outside the normative data at 2cpd. We conclude that mercury exposure levels found in the Amazon gold miners is high enough to damage the visual system and can be assessed by non-invasive electrophysiological techniques. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), is a potent vasodilator and plays a prominent role in regulating the cardiovascular system. Decreased basal NO release may predispose to cardiovascular diseases. Evidence suggests that the 27 nt repeat polymorphism of the intron 4 in the eNOS gene may regulate eNOS expression. On the other hand, some recent reports strongly suggest an association between methylmercury (MeHg) exposures and altered NO synthesis. In the present study, we investigate the contribution of the 27-pb tandem repeat polymorphism on nitric oxide production, which could enhance susceptibility to cardiovascular disease in the MeHg-exposed study population. Two-hundred-two participants (98 men and 104 women), all chronically exposed to MeHg through fish consumption were examined. Mean blood Hg concentration and nitrite plasma concentration were 50.5 +/- 35.4 mu g/L and 251.4 +/- 106.3 nM, respectively. Mean systolic and diastolic blood pressure were 120.1 +/- 19.4 mm Hg and 72.0 +/- 10.6 mm Hg, respectively. Mean body mass index was 24.5 +/- 4.3 kg/m(2) and the mean heart rate was 69.8 +/- 11.8 bpm. There were no significant differences in age, arterial blood pressure, body mass index or cardiac frequency between genotype groups (all P>0.05). However, we observed different nitrite concentrations in the genotypes groups, with lower nitrite levels for the 4a4a genotype carriers. Age, gender and the presence of intron 4 polymorphism contributed to nitrite reduction as a result of blood Hg concentration. Taken together, our results show that the 27 nt repeat polymorphism of the intron 4 in the eNOS gene increases susceptibility to cardiovascular diseases after MeHg exposure by modulating nitric oxide levels. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The present study raised the hypothesis that the trophic status in a tropical coastal food web from southeastern Brazil can be measured by the relation between total mercury (THg) and nitrogen isotope (delta(15)N) in their components. The analysed species were grouped into six trophic positions: primary producer (phytoplankton), primary consumer (zooplankton), consumer 1 (omnivore shrimp), consumer 2 (pelagic carnivores represented by squid and fish species), consumer 3 (demersal carnivores represented by fish species) and consumer 4 (pelagic-demersal top carnivore represented by the fish Trichiurus lepturus). The values of THg, delta(15)N, and trophic level (TLv) increased significantly from primary producer toward top carnivore. Our data regarding trophic magnification (6.84) and biomagnification powers (0.25 for delta(15)N and 0.83 for TLv) indicated that Hg biomagnification throughout trophic positions is high in this tropical food web, which could be primarily related to the quality of the local water.
Resumo:
This paper reports on Y2O3:Eu3+ containing 1 mol% of Ag-0 nanoparticle films recovered with a SiO2 layer by using glass foil as a substrate for a possible optical display device application. The obtained film showed an intense emission at 612 nm due to the Eu3+ 5D0 -> F-7(2) hypersensitive transition, a high transmittance in that emission range, an excellent optical quality, and a high absorption only below 300 nm. Moreover, despite the presence of the SiO2 layer used to improve the phosphor adhesion on Corning (R) foil substrates, the intensity ratios between the emissions assigned to Eu3+ D-5(0) -> F-7(2) (dipole electric transition) and D-5(0) -> F-7(1) (dipole magnetic transition) were not affected by it. The x and y coordinate values found in the 1931 Commission Internationale de l'Eclairage Chromaticity Diagram for this film reveal that it has a suitable pure red color emission for optical displays devices. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
Polythiophene (PTh) phase electropolymerized on the stainless steel wire was evaluated as solid-phase microextraction (SPME), and analysis by liquid chromatography with spectrophotometric detection (LC-UV) for determination of new-generation antidepressants, selective serotonin reuptake inhibitors (SSRIs) (citalopram, paroxetine, fluoxetine and sertraline), in plasma samples. The influence of electropolymerization variables (scan rate, potential range and scan cycles) was evaluated on SPME performance. The SPME variables (extraction time, temperature, matrix pH, ionic strength and desorption procedure), as well as the influence of plasma proteins on sorption mechanisms were also evaluated. The SPME/LC-UV method developed for determination of antidepressants in plasma sample presented a linear range between the limit of quantification (LOQ, 200-250 ng mL(-1)) to 4000 ng mL(-1), and interday precision with coefficient of variation (CV) ranged from 11 to 15%. The proposed method can be a useful tool for the determination of antidepressants in human plasma samples in urgent toxicological analysis after the accidental or suicidal intake of higher doses of medications.
Resumo:
In a homemade UV-Ozone generator, different ignition tubes extracted from HID mercury vapor lamps were investigated, namely: 80, 125, 250 and 400 watts. The performance of the generator in function of the type of the ignition lamp was monitored by the measurements of the ozone concentration and the temperature increment. The results have shown that the 400 W set up presented the highest ozone production, which was used in the treatment of indium tin oxide (ITO) films. Polymer light emitting diodes were assembled using ITO films, treated for 10, 20 and 30 min, as an anode. The overall results indicate improvement of the threshold voltage (reduction) and electroluminescence of these devices.
Resumo:
The need to develop new dental luting agents in order to improve the success of treatments has greatly motivated research. Objective: The aim of this study was to evaluate the diametral tensile strength (DTS) and film thickness (FT) of an experimental dental luting agent derived from castor oil (COP) with or without addition of different quantities of filler (calcium carbonate - CaCO3). Material and Methods: Eighty specimens were manufactured (DTS N=40; FT N=40) and divided into 4 groups: Pure COP; COP 10%; COP 50% and zinc phosphate (control). The cements were mixed according to the manufacturers' recommendations and submitted to the tests. The DTS test was performed in the MTS 810 testing machine (10 KN, 0.5 mm/min). For FT test, the cements were sandwiched between two glass plates (2 cm(2)) and a load of 15 kg was applied vertically on the top of the specimen for 10 min. The data were analyzed by means of one-way ANOVA and Tukey's test (alpha=0.05). Results: The values of DTS (MPa) were: Pure COP- 10.94 +/- 1.30; COP 10%- 30.06 +/- 0.64; COP 50%- 29.87 +/- 0.27; zinc phosphate- 4.88 +/- 0.96. The values of FT (pm) were: Pure COP- 31.09 +/- 3.16; COP 10%- 17.05 +/- 4.83; COP 50%- 13.03 +/- 4.83; Zinc Phosphate- 20.00 +/- 0.12. One-way ANOVA showed statistically significant differences among the groups (DTS - p=1.01E-40; FT - p=2.4E-10). Conclusion: The experimental dental luting agent with 50% of filler showed the best diametral tensile strength and film thickness.
Resumo:
The influence of pH during hydrolysis of titanium(IV) isopropoxide on the morphological and electronic properties of TiO2 nanoparticles prepared by the sol-gel method is investigated and correlated to the photoelectrochemical parameters of dye-sensitized solar cells (DSCs) based on TiO2 films. Nanoparticles prepared under acid pH exhibit smaller particle size and higher surface area, which result in higher dye loadings and better short-circuit current densities than DSCs based on alkaline TiO2-processed films. On the other hand, the product of charge collection and separation quantum yields in films with TiO2 obtained by alkaline hydrolysis is c. a. 27% higher than for the acid TiO2 films. The combination of acid and alkaline TiO2 nanoparticles as mesoporous layer in DSCs results in a synergic effect with overall efficiencies up to 6.3%, which is better than the results found for devices employing one of the nanoparticles separately. These distinct nanoparticles can be also combined by using the layer-by-layer technique (LbL) to prepare compact TiO2 films applied before the mesoporous layer. DSCs employing photoanodes with 30 TiO2 bilayers have shown efficiencies up to 12% higher than the nontreated photoanode ones. These results can be conveniently used to develop optimized synthetic procedures of TiO2 nanoparticles for several dye-sensitized solar cell applications.
Resumo:
Mercury is neurotoxic, and numerous studies have confirmed its ototoxic effect. However, the diagnosis and follow-up of mercury exposure require understanding the pathophysiology of the chemical substance. Based on a systematic literature review, this study aimed to demonstrate whether mercury is ototoxic and to analyze its mechanism of action on the peripheral and central auditory system, in order to contribute to the diagnosis and follow-up of exposure. This was a systematic review of studies published on the effects of mercury exposure on the auditory system. The full text of the studies and their methodological quality were analyzed. The review identified 108 studies published on the theme, of which 28 met the inclusion criteria. All the articles in the analysis showed that mercury exposure is ototoxic and produces peripheral and/or central damage. Acute and long-term exposure produces irreversible damage to the central auditory system. Biomarkers were unable to predict the relationship between degree of mercury poisoning and degree of lesion in the auditory system.
Resumo:
Polythiophene (PTh) phase electropolymerized on the stainless steel wire was evaluated as solid-phase microextraction (SPME), and analysis by liquid chromatography with spectrophotometric detection (LC-UV) for determination of new-generation antidepressants, selective serotonin reuptake inhibitors (SSRIs) (citalopram, paroxetine, fluoxetine and sertraline), in plasma samples. The influence of electropolymerization variables (scan rate, potential range and scan cycles) was evaluated on SPME performance. The SPME variables (extraction time, temperature, matrix pH, ionic strength and desorption procedure), as well as the influence of plasma proteins on sorption mechanisms were also evaluated. The SPME/LC-UV method developed for determination of antidepressants in plasma sample presented a linear range between the limit of quantification (LOQ, 200-250 ng mL-1) to 4000 ng mL-1, and interday precision with coefficient of variation (CV) ranged from 11 to 15%. The proposed method can be a useful tool for the determination of antidepressants in human plasma samples in urgent toxicological analysis after the accidental or suicidal intake of higher doses of medications.
Resumo:
Rationale: The primary function of surfactant is to reduce the surface tension at air-liquid interface. In this study, the surface tension behavior of two commercial surfactants, poractant alfa (ChiesiFarmaceuticals,ltaly) and beractant (Abbott Laboratories,USA), were evaluated,using new parameters. Methods: We used a Langmuir film balance (Minitrough,KSV lnstruments,Finland) to measure of surface tension of both poractant alfa and beractant samples. For both samples,we prepared a solution of 1 mg/mdl dissolved in chloroform. The solution (1uL) was applied over a subphase of milli-Q water (175 ml) in the chamber of the balance. The chamber has two moving barriers that can change its surface area between a maximum value of 112.5 cm2 anda minimum value of 22.5 cm2, defining a balance cycle.lhree sample's films were evaluated for each sample, during 20 balance cycles. Here quantify two new variables, which is the mean hysteresis area of the measured curve surface tension of the last 16 balance cycles,defined here as Mean Work Cycle (MWC), and the moment that the surfactant is active in the surface, this measure is defined here as Active Surface Area Critical in the compression (ASACC) and the expansion (ASACE). The test was applied to compare the statistical significance of the results.
Resumo:
The existence of immune self-tolerance allows the immune system to mount responses against infectious agents, but not against self-molecular constitutes. Although self-tolerance is a robust phenomenon, in some individuals as well as in experimental models, the self-tolerance breaks down and as a result, a self-destructive autoimmune disease emerges. The underlying mechanisms for the development of autoimmune diseases are not known, but genetic, environmental and immunological factors are suggested to be involved. In this thesis, we used murine mercury-induced autoimmunity to test this suggestion. In susceptible mice mercuric chloride induces a systemic autoimmune disease characterized by increased serum levels of IgG1 and IgE, production of anti-nucleolar autoantibodies (ANolA) and formation of renal IgG deposits. In contrast, in resistant DBA/2 (H-2d) mice, none of these characteristics develop after exposure to mercury. By crossing and backcrossing mercury-resistant DBA/2 mice to mercury susceptible strains, we found that the resistance was inherited as a dominant trait in F1 hybrids and that one gene or a cluster of genes located in the H-2 loci determined the resistance to ANolA production, whereas resistance to the other characteristics was found to be controlled by two or three non-H-2 genes. We further put forward the “cryptic peptide hypothesis” to investigate whether mercury and another xenobiotic metal use similar pathway(s) to induce the H-2 linked production of ANolA. We found that while mercury stimulated ANolA synthesis in all H-2 susceptible (H-2s, H-2q and H-2f) mouse strains, silver induced only ANolA responses in H-2s and H-2q mice, but not in H-2f mice. Further studies showed that the resistance to silver-induced ANolA production in H-2f mice was inherited as a dominant trait. We next tested the proposition that mercury induces more adverse immunological effects in mouse strains, which are genetically prone to develop autoimmune diseases, using tight-skin 1 mice, an animal model for human Scleroderma. It was found that in this strain, mercury induced a strong immune activation with autoimmune characteristics, but did not accelerate the development of dermal fibrosis, a characteristic in Tsk/1 mice. Finally we addressed the Th1/Th2 cross-regulation paradigm by examining if a Th1-type of response could interact with a Th2-type of response if simultaneous induced in susceptible mice. Our findings demonstrated that mercury-induced autoimmunity (Th2-type) and collagen-induced arthritis (CIA) (Th1-type) can interact in a synergistic, antagonistic or additive fashion, depending on at which stage of CIA mercury is administered.
Resumo:
Mercury (Hg) pollution is a global environmental problem. Numerous Hg-contaminated sites exist in the world and new techniques for remediation are urgently needed. Phytoremediation, use of plants to remove pollutants from the environment or to render them harmless, is considered as an environment-friendly method to remediate contaminated soil in-situ and has been applied for some other heavy metals. Whether this approach is suitable for remediation of Hg-contaminated soil is, however, an open question. The aim of this thesis was to study the fate of Hg in terrestrial plants (particularly the high biomass producing willow, Salix spp.) and thus to clarify the potential use of plants to remediate Hg-contaminated soils. Plants used for phytoremediation of Hg must tolerate Hg. A large variation (up to 30-fold difference) was detected among the six investigated clones of willow in their sensitivity to Hg as reflected in their empirical toxicity threshold (TT95b), the maximum unit toxicity (UTmax) and EC50 levels. This gives us a possibility to select Hg-tolerant willow clones to successfully grow in Hgcontaminated soils for phytoremediation. Release of Hg into air by plants is a concern when using phytoremediation in practice. No evidence was found in this study that Hg was released to the air via shoots of willow, garden pea (Pisum sativum L. cv Faenomen), spring wheat (Triticum aestivum L. cv Dragon), sugar beet (Beta vulgaris L. cv Monohill), oil-seed rape (Brassica napus L. cv Paroll) and white clover (Trifolium repens L.). Thus, we conclude that the Hg burden to the atmosphere via phytoremediation is not increased. Phytoremediation processes are based on the ability of plant roots to accumulate Hg and to translocate it to the shoots. Willow roots were shown to be able to efficiently accumulate Hg in hydroponics, however, no variation in the ability to accumulate was found among the eight willow clones using CVAAS to analyze Hg content in plants. The majority of the Hg accumulated remained in the roots and only 0.5-0.6% of the Hg accumulation was translocated to the shoots. Similar results were found for the five common cultivated plant species mentioned above. Moreover, the accumulation of Hg in willow was higher when being cultivated in methyl-Hg solution than in inorganic Hg solution, whereas the translocation of Hg to the shoots did not differ. The low bioavailability of Hg in contaminated soil is a restricting factor for the phytoextraction of Hg. A selected tolerant willow clone was used to study whether iodide addition could increase the plant-accumulation of Hg from contaminated soil. Both pot tests and field trials were carried out. Potassium iodide (KI) addition was found to mobilize Hg in contaminated soil and thus increase the bioavailability of Hg in soils. Addition of KI (0.2–1 mM) increased the Hg concentrations up to about 5, 3 and 8 times in the leaves, branches and roots, respectively. However, too high concentrations of KI were toxic to plants. As the majority of the Hg accumulated in the roots, it might be unrealistic to use willow for phytoextraction of Hg in practice, even though iodide could enhance the phytoextraction efficiency. In order to study the effect of willow on various soil fractions of Hg-contaminated soil, a 5-step sequential soil extraction method was used. Both the largest Hg-contaminated fractions, i.e. the Hg bound to residual organic matter (53%) and sulphides (43%), and the residual fraction (2.5%), were found to remain stable during cultivations of willow. The exchangeable Hg (0.1%) and the Hg bound to humic and fulvic acids (1.1%) decreased in the rhizospheric soil, whereas the plant accumulation of Hg increased with the cultivation time. The sum of the decrease of the two Hg fractions in soils was approximately equal to the amount of the Hg accumulated in plants. Consequently, plants may be suitable for phytostabilization of aged Hg-contaminated soil, in which root systems trap the bioavailable Hg and reduce the leakage of Hg from contaminated soils.