937 resultados para IMMOBILIZED HORSERADISH-PEROXIDASE
Resumo:
Spirodiazaselenuranes are structurally interesting compounds and the stability of these compounds depends highly on the nature of the substituents attached to the nitrogen atoms. Aromatic substituents are known to play important roles in stabilizing the Se-N bonds in spiro compounds. In this study, several spirodiazaselenuranes are synthesized by introducing benzylic and aliphatic substituents to understand their effect on the stability of the Se-N bonds and the antioxidant activity. Replacement of phenyl substituent by benzyl/alkyl groups significantly reduces the stability of the spirodiazaselenuranes and slows down the oxidative cyclization process. The selenium centre in the spiro compounds undergoes further oxidation to produce the corresponding selenurane oxides, which are stable at room temperature. Comparison of the glutathione peroxidase (GPx) mimetic activity of the compounds showed that the diaryl selenides having heterocyclic rings are significantly more active due to the facile oxidation of the selenium centre. However, the activity is reduced significantly for compounds having aliphatic substituents. In addition to GPx activity, the compounds also inhibit peroxynitrite-mediated nitration and oxidation reaction of protein and small molecules, respectively. The experimental observations suggest that the antioxidant activity is increased considerably upon substitution of the aromatic group with the benzylic/aliphatic substituents on the nitrogen atoms.
Resumo:
Blends of polycaprolactone (PCL), a synthetic polymer and gelatin, natural polymer offer a optimal combination of strength, water wettability and cytocompatibility for use as a resorbable biomaterial. The enzymatic degradation of PCL, gelatin and PCL-gelatin blended films was studied in the presence of lipase (Novozym 435, immobilized) and lysozyme. Novozym 435 degraded the PCL films whereas lysozyme degraded the gelatin. Though Novozym 435 and lysozyme individually could degrade PCL-gelatin blended films, the combination of these enzymes showed the highest degradation of these blended films. Moreover, the enzymatic degradation was much faster when fresh enzymes were added at regular intervals. The changes in physico-chemical properties of polymer films due to degradation were studied by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. These results have important implications for designing resorbable biomedical implants.
Resumo:
Blends of polycaprolactone (PCL), a synthetic polymer and gelatin, natural polymer offer a optimal combination of strength, water wettability and cytocompatibility for use as a resorbable biomaterial. The enzymatic degradation of PCL, gelatin and PCL-gelatin blended films was studied in the presence of lipase (Novozym 435, immobilized) and lysozyme. Novozym 435 degraded the PCL films whereas lysozyme degraded the gelatin. Though Novozym 435 and lysozyme individually could degrade PCL-gelatin blended films, the combination of these enzymes showed the highest degradation of these blended films. Moreover, the enzymatic degradation was much faster when fresh enzymes were added at regular intervals. The changes in physico-chemical properties of polymer films due to degradation were studied by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. These results have important implications for designing resorbable biomedical implants.
Resumo:
Ready-to-use screen printed glucose sensors are fabricated using Prussian Blue (PB) and Cobalt Phthalocyanine (CoPC) mediated carbon inks as working electrodes. The reference and counter electrodes are screen printed using silver/silver chloride and graphitic carbon paste respectively. The screen printed reference electrodes (internal reference electrode (IRE)) are found to be stable for more than 60 minutes when examined with saturated calomel electrode. Optimal operating voltage for PB and CoPC screen printed sensors are determined by hydrodynamic voltammetric technique. Glucose oxidase is immobilized on the working electrodes by cross-linking method. PB mediated glucose sensor exhibits a sensitivity of 5.60 mA cm(-2)/mM for the range, 10 to 1000 mu M. Sensitivity of CoPC mediated glucose sensor is found to be 5.224 mu A cm(-2)/mM and amperometeric response is linear for the range, 100 to 1500 mu M. Interference studies on the fabricated glucose sensors are conducted with species like uric acid and ascorbic acid. PB mediated sensors showed a completely interference-free behavior. The sensing characteristics of PB mediated glucose sensors are also studied in diluted human serum samples and the results are compared with the values obtained through standard clinical method. The co-efficient of variation is found to be less than 5%. (C) 2015 The Electrochemical Society. All rights reserved.
Resumo:
The feasibility of using protein A to immobilize antibody on silicon surface for a biosensor with imaging ellipsometry was presented in this study. The amount of human IgG bound with anti-IgG immobilized by the protein A on silicon surface was much more than that bound with anti-IgG immobilized by physical adsorption. The result indicated that the protein A could be used to immobilize antibody molecules in a highly oriented manner and maintain antibody molecular functional configuration on the silicon surface. High reproducibility of the amount of antibody immobilization and homogenous antibody adsorption layer on surfaces could be obtained by this immobilization method. Imaging ellipsometry has been proven to be a fast and reliable detection method and sensitive enough to detect small changes in a molecular monolayer level. The combination of imaging ellipsometry and surface modification with protein A has the potential to be further developed into an efficient immunoassay protein chip.
Resumo:
基于剪切流动腔技术,以微球作为受力载体,设计了一套可用于研究表面固定化配基与目标分子特异性相互作用力的实验和分析方法,并以人免疫球蛋白G (human IgG)和羊抗人免疫球蛋白G(goat anti-human IgG)分别作为模型配基和模型目标分子进行了研究.基于平面Poiseuille层流模型设计了流场参数,以数值计算结果验证了设计的合理性.使用牛血清白蛋白(BSA)作为非特异性对照,判断微球与基片表面的结合力来自配基和目标分子的生物特异性相互作用,并由进一步的目标分子灭活对比实验确认了这一结论.实验观察到微球与基片表面的结合力受到配基面密度的影响,说明发生结合的是多对而非单对蛋白质分子.将95%的微球被剥离时对应的壁面剪切率设定为临界剪切率,由大量实验结果拟合得到了临界剪切率与配基面密度间的定量关系.在受力分析模型中,考虑到多分子的结合,以及分子键位置不同造成的力臂长度的差异,最终计算得到单对配基与目标分子的平均结合力约为342pN.
Resumo:
One kind of surface modification method on silicon wafer was presented in this paper. A mixed silanes layer was used to modify silicon surface and rendered the surface medium hydrophobic. The mixed silanes layer contained two kinds of compounds, aminopropyltriethoxysilane (APTES) and methyltriethoxysilane (NITES). A few of APTES molecules in the layer was used to immobilize covalently human immunoglobulin G (IgG) on the silicon surface. The human IgG molecules immobilized covalently on the modified surface could retain their structures well and bind more antibody molecules than that on silicon surface modified with only APTES. This kind of surface modification method effectively improved the sensitivity of the biosensor with imaging ellipsometry.
Resumo:
Receptor-based detection of pathogens often suffers from non-specific interactions, and as most detection techniques cannot distinguish between affinities of interactions, false positive responses remain a plaguing reality. Here, we report an anharmonic acoustic based method of detection that addresses the inherent weakness of current ligand dependant assays. Spores of Bacillus subtilis (Bacillus anthracis simulant) were immobilized on a thickness-shear mode AT-cut quartz crystal functionalized with anti-spore antibody and the sensor was driven by a pure sinusoidal oscillation at increasing amplitude. Biomolecular interaction forces between the coupled spores and the accelerating surface caused a nonlinear modulation of the acoustic response of the crystal. In particular, the deviation in the third harmonic of the transduced electrical response versus oscillation amplitude of the sensor (signal) was found to be significant. Signals from the specifically-bound spores were clearly distinguishable in shape from those of the physisorbed streptavidin-coated polystyrene microbeads. The analytical model presented here enables estimation of the biomolecular interaction forces from the measured response. Thus, probing biomolecular interaction forces using the described technique can quantitatively detect pathogens and distinguish specific from non-specific interactions, with potential applicability to rapid point-of-care detection. This also serves as a potential tool for rapid force-spectroscopy, affinity-based biomolecular screening and mapping of molecular interaction networks.
Resumo:
An immunosensor interface based on mixed hydrophobic self-assembled monolayers (SAMs) of methyl and carboxylic acid terminated thiols with covalently attached human Immunoglobulin G (hIgG), is investigated. The densely packed and organised SAMs were characterised by contact angle measurements and cyclic voltammetry. The effect of the non-ionic surfactant, Tween 20, in preventing nonspecific adsorption is addressed by ellipsometry during physical and covalent hIgG immobilization on pure and mixed SAMs, respectively. It is clearly demonstrated that nonspecific adsorption due to hydrophobic interactions of hIgG on methyl ended groups is totally inhibited, whereas electrostatic/hydrogen bonding interactions with the exposed carboxylic groups prevail in the presence of surfactant. Results of ellipsometry and Atomic Force Microscopy, reveal that the surface concentration of covalently immobilized hIgG is determined by the ratio of COOH/CH3-terminated thiols in SAM forming solution. Moreover, the ellipsometric data demonstrates that the ratio of bound anti-hIgG/hIgG depends on the density of hIgG on the surface and that the highest ratio is close to three. We also report the selectivity and high sensitivity achieved by chronoamperometry in the detection of adsorbed hIgG and the reaction with its antibody.
Resumo:
Surface plasmon resonance (SPR) technology and the Biacore biosensor have been widely used to measure the kinetics of biomolecular interactions in the fluid phase. In the past decade, the assay was further extended to measure reaction kinetics when two counterpart molecules are anchored on apposed surfaces. However, the cell binding kinetics has not been well quantified. Here we report development of a cellular kinetic model, combined with experimental procedures for cell binding kinetic measurements, to predict kinetic rates per cell. Human red blood cells coated with bovine serum albumin and anti-BSA monoclonal antibodies (mAbs) immobilized on the chip were used to conduct the measurements. Sensor-grams for BSA-coated RBC binding onto and debinding from the anti-BSA mAb-immobilized chip were obtained using a commercial Biacore 3000 biosensor, and analyzed with the cellular kinetic model developed. Not only did the model fit the data well, but it also predicted cellular on and off-rates as well as binding affinities from curve fitting. The dependence of flow duration, flow rate, and site density of BSA on binding kinetics was tested systematically, which further validated the feasibility and reliability of the new approach. Crown copyright (c) 2008 Published by Elsevier Inc. All rights reserved.
Resumo:
11 p.
Resumo:
A parallel plate flow chamber was used to study the interaction force between human IgG (immobilized on a chip surface as ligand) and goat anti-human IgG (immobilized on microspheres surface as receptor). First, it was demonstrated that the binding force between the microspheres and the chip surface came from the bio-specific interaction between the antigen and the antibody. Secondly, it was obtained that the critical shear rate to detach microspheres from the chip surface increases with the ligand surface concentration. Finally, two models to estimate the antigen-antibody bond strength considering bonds' positions were proposed and analyzed.
Resumo:
Background: Human melanoma frequently colonizes bone marrow (BM) since its earliest stage of systemic dissemination, prior to clinical metastasis occurrence. However, how melanoma cell adhesion and proliferation mechanisms are regulated within bone marrow stromal cell (BMSC) microenvironment remain unclear. Consistent with the prometastatic role of inflammatory and angiogenic factors, several studies have reported elevated levels of cyclooxygenase-2 (COX-2) in melanoma although its pathogenic role in bone marrow melanoma metastasis is unknown. Methods: Herein we analyzed the effect of cyclooxygenase-2 (COX-2) inhibitor celecoxib in a model of generalized BM dissemination of left cardiac ventricle-injected B16 melanoma (B16M) cells into healthy and bacterial endotoxin lipopolysaccharide (LPS)-pretreated mice to induce inflammation. In addition, B16M and human A375 melanoma (A375M) cells were exposed to conditioned media from basal and LPS-treated primary cultured murine and human BMSCs, and the contribution of COX-2 to the adhesion and proliferation of melanoma cells was also studied. Results: Mice given one single intravenous injection of LPS 6 hour prior to cancer cells significantly increased B16M metastasis in BM compared to untreated mice; however, administration of oral celecoxib reduced BM metastasis incidence and volume in healthy mice, and almost completely abrogated LPS-dependent melanoma metastases. In vitro, untreated and LPS-treated murine and human BMSC-conditioned medium (CM) increased VCAM-1-dependent BMSC adherence and proliferation of B16M and A375M cells, respectively, as compared to basal medium-treated melanoma cells. Addition of celecoxib to both B16M and A375M cells abolished adhesion and proliferation increments induced by BMSC-CM. TNF alpha and VEGF secretion increased in the supernatant of LPS-treated BMSCs; however, anti-VEGF neutralizing antibodies added to B16M and A375M cells prior to LPS-treated BMSC-CM resulted in a complete abrogation of both adhesion-and proliferation-stimulating effect of BMSC on melanoma cells. Conversely, recombinant VEGF increased adherence to BMSC and proliferation of both B16M and A375M cells, compared to basal medium-treated cells, while addition of celecoxib neutralized VEGF effects on melanoma. Recombinant TNFa induced B16M production of VEGF via COX-2-dependent mechanism. Moreover, exogenous PGE2 also increased B16M cell adhesion to immobilized recombinant VCAM-1. Conclusions: We demonstrate the contribution of VEGF-induced tumor COX-2 to the regulation of adhesion-and proliferation-stimulating effects of TNFa, from endotoxin-activated bone marrow stromal cells, on VLA-4-expressing
Phage M13Ko7 Detection With Biosensor Based On Imaging Ellipsometry And Afm Microscopic Confirmation
Resumo:
A rapid detection and identification of pathogens is important for minimizing transfer and spread of disease. A label-free and multiplex biosensor based on imaging ellipsometry (BIE) had been developed for the detection of phage M13KO7. The surface of silicon wafer is modified with aldehyde, and proteins can be patterned homogeneously and simultaneously on the surface of silicon wafer in an array format by a microfluidic system. Avidin is immobilized on the surface for biotin-anti-M13 immobilization by means of interaction between avidin and biotin, which will serve as ligand against phage M13KO7. Phages M13KO7 are specifically captured by the ligand when phage M13KO7 solution passes over the surface, resulting in a significant increase of mass surface concentration of the anti-M13 binding phage M13KO7 layer, which could be detected by imaging ellipsometry with a sensitivity of 10(9) pfu/ml. Moreover, atomic force microscopy is also used to confirm the fact that phage M13KO7 has been directly captured by ligands on the surface. It indicates that BIE is competent for direct detection of phage M13KO7 and has potential in the field of virus detection. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Micro-fabrication technology has substantial potential for identifying molecular markers expressed on the surfaces of tissue cells and viruses. It has been found in several conceptual prototypes that cells with such markers are able to be captured by their antibodies immobilized on microchannel substrates and unbound cells are flushed out by a driven flow. The feasibility and reliability of such a microfluidic-based assay, however, remains to be further tested. In the current work, we developed a microfluidic-based system consisting of a microfluidic chip, an image grabbing unit, data acquisition and analysis software, as well as a supporting base. Specific binding of CD59-expressed or BSA-coupled human red blood cells (RBCs) to anti-CD59 or anti-BSA antibody-immobilized chip surfaces was quantified by capture efficiency and by the fraction of bound cells. Impacts of respective flow rate, cell concentration, antibody concentration and site density were tested systematically. The measured data indicated that the assay was robust. The robustness was further confirmed by capture efficiencies measured from an independent ELISA-based cell binding assay. These results demonstrated that the system developed provided a new platform to effectively quantify cellular surface markers effectively, which promoted the potential applications in both biological studies and clinical diagnoses.