969 resultados para Compressão de dados (Telecomunicações)
Resumo:
This thesis proposes the specification and performance analysis of a real-time communication mechanism for IEEE 802.11/11e standard. This approach is called Group Sequential Communication (GSC). The GSC has a better performance for dealing with small data packets when compared to the HCCA mechanism by adopting a decentralized medium access control using a publish/subscribe communication scheme. The main objective of the thesis is the HCCA overhead reduction of the Polling, ACK and QoS Null frames exchanged between the Hybrid Coordinator and the polled stations. The GSC eliminates the polling scheme used by HCCA scheduling algorithm by using a Virtual Token Passing procedure among members of the real-time group to whom a high-priority and sequential access to communication medium is granted. In order to improve the reliability of the mechanism proposed into a noisy channel, it is presented an error recovery scheme called second chance algorithm. This scheme is based on block acknowledgment strategy where there is a possibility of retransmitting when missing real-time messages. Thus, the GSC mechanism maintains the real-time traffic across many IEEE 802.11/11e devices, optimized bandwidth usage and minimal delay variation for data packets in the wireless network. For validation purpose of the communication scheme, the GSC and HCCA mechanisms have been implemented in network simulation software developed in C/C++ and their performance results were compared. The experiments show the efficiency of the GSC mechanism, especially in industrial communication scenarios.
Resumo:
This study presents a description of the development model of a representation of simplified grid applied in hybrid load flow for calculation of the voltage variations in a steady-state caused by the wind farm on power system. Also, it proposes an optimal load-flow able to control power factor on connection bar and to minimize the loss. The analysis process on system, led by the wind producer, it has as base given technician supplied by the grid. So, the propose model to the simplification of the grid that allows the necessity of some knowledge only about the data referring the internal network, that is, the part of the network that interests in the analysis. In this way, it is intended to supply forms for the auxiliary in the systematization of the relations between the sector agents. The model for simplified network proposed identifies the internal network, external network and the buses of boulders from a study of vulnerability of the network, attributing them floating liquid powers attributing slack models. It was opted to apply the presented model in Newton-Raphson and a hybrid load flow, composed by The Gauss-Seidel method Zbarra and Summation Power. Finally, presents the results obtained to a developed computational environment of SCILAB and FORTRAN, with their respective analysis and conclusion, comparing them with the ANAREDE
Resumo:
In this research study, in which I discuss the discursive constitution of ethnic-racial identity of black male and female teachers, I understand that the process of identity formation of the subject covers both personal/family and social/professional areas. In it, I propose, in general terms, to analyze the discursive practices present in narratives of black male and female teachers when they look for their social insertion into different social contexts, identifying outbreaks of resistance that are present in their process of ethnicracial identities. The fundamental issue that permeates the survey investigates: how can black male and female teachers behave discursively in the construction of ethnicracial identities in multiple distinct contexts? The theoretical foundations that support this research work come from theoretical fields that complement each other; among them, French Discourse Analysis, Foucault s Theory and cultural studies. These, even with their singularities, are being interlaced by the conception that conceives language as social practice. Methodologically, I adopt an interpretative and qualitative paradigm to examine not only the linguistic repertoires that compose these teachers written narratives written but also the data that were generated by semi-structured interviews. The results show that the subjects, realizing contrary forces that interfere in their process of social inclusion, make use of acetic techniques to (re)signify the history of their lives
Resumo:
The human voice is an important communication tool and any disorder of the voice can have profound implications for social and professional life of an individual. Techniques of digital signal processing have been used by acoustic analysis of vocal disorders caused by pathologies in the larynx, due to its simplicity and noninvasive nature. This work deals with the acoustic analysis of voice signals affected by pathologies in the larynx, specifically, edema, and nodules on the vocal folds. The purpose of this work is to develop a classification system of voices to help pre-diagnosis of pathologies in the larynx, as well as monitoring pharmacological treatments and after surgery. Linear Prediction Coefficients (LPC), Mel Frequency cepstral coefficients (MFCC) and the coefficients obtained through the Wavelet Packet Transform (WPT) are applied to extract relevant characteristics of the voice signal. For the classification task is used the Support Vector Machine (SVM), which aims to build optimal hyperplanes that maximize the margin of separation between the classes involved. The hyperplane generated is determined by the support vectors, which are subsets of points in these classes. According to the database used in this work, the results showed a good performance, with a hit rate of 98.46% for classification of normal and pathological voices in general, and 98.75% in the classification of diseases together: edema and nodules
Resumo:
The area of the hospital automation has been the subject a lot of research, addressing relevant issues which can be automated, such as: management and control (electronic medical records, scheduling appointments, hospitalization, among others); communication (tracking patients, staff and materials), development of medical, hospital and laboratory equipment; monitoring (patients, staff and materials); and aid to medical diagnosis (according to each speciality). This thesis presents an architecture for a patient monitoring and alert systems. This architecture is based on intelligent systems techniques and is applied in hospital automation, specifically in the Intensive Care Unit (ICU) for the patient monitoring in hospital environment. The main goal of this architecture is to transform the multiparameter monitor data into useful information, through the knowledge of specialists and normal parameters of vital signs based on fuzzy logic that allows to extract information about the clinical condition of ICU patients and give a pre-diagnosis. Finally, alerts are dispatched to medical professionals in case any abnormality is found during monitoring. After the validation of the architecture, the fuzzy logic inferences were applied to the trainning and validation of an Artificial Neural Network for classification of the cases that were validated a priori with the fuzzy system
Resumo:
In this work we use Interval Mathematics to establish interval counterparts for the main tools used in digital signal processing. More specifically, the approach developed here is oriented to signals, systems, sampling, quantization, coding and Fourier transforms. A detailed study for some interval arithmetics which handle with complex numbers is provided; they are: complex interval arithmetic (or rectangular), circular complex arithmetic, and interval arithmetic for polar sectors. This lead us to investigate some properties that are relevant for the development of a theory of interval digital signal processing. It is shown that the sets IR and R(C) endowed with any correct arithmetic is not an algebraic field, meaning that those sets do not behave like real and complex numbers. An alternative to the notion of interval complex width is also provided and the Kulisch- Miranker order is used in order to write complex numbers in the interval form enabling operations on endpoints. The use of interval signals and systems is possible thanks to the representation of complex values into floating point systems. That is, if a number x 2 R is not representable in a floating point system F then it is mapped to an interval [x;x], such that x is the largest number in F which is smaller than x and x is the smallest one in F which is greater than x. This interval representation is the starting point for definitions like interval signals and systems which take real or complex values. It provides the extension for notions like: causality, stability, time invariance, homogeneity, additivity and linearity to interval systems. The process of quantization is extended to its interval counterpart. Thereafter the interval versions for: quantization levels, quantization error and encoded signal are provided. It is shown that the interval levels of quantization represent complex quantization levels and the classical quantization error ranges over the interval quantization error. An estimation for the interval quantization error and an interval version for Z-transform (and hence Fourier transform) is provided. Finally, the results of an Matlab implementation is given
Resumo:
This work intends to analyze the behavior of the gas flow of plunger lift wells producing to well testing separators in offshore production platforms to aim a technical procedure to estimate the gas flow during the slug production period. The motivation for this work appeared from the expectation of some wells equipped with plunger lift method by PETROBRAS in Ubarana sea field located at Rio Grande do Norte State coast where the produced fluids measurement is made in well testing separators at the platform. The oil artificial lift method called plunger lift is used when the available energy of the reservoir is not high enough to overcome all the necessary load losses to lift the oil from the bottom of the well to the surface continuously. This method consists, basically, in one free piston acting as a mechanical interface between the formation gas and the produced liquids, greatly increasing the well s lifting efficiency. A pneumatic control valve is mounted at the flow line to control the cycles. When this valve opens, the plunger starts to move from the bottom to the surface of the well lifting all the oil and gas that are above it until to reach the well test separator where the fluids are measured. The well test separator is used to measure all the volumes produced by the well during a certain period of time called production test. In most cases, the separators are designed to measure stabilized flow, in other words, reasonably constant flow by the use of level and pressure electronic controllers (PLC) and by assumption of a steady pressure inside the separator. With plunger lift wells the liquid and gas flow at the surface are cyclical and unstable what causes the appearance of slugs inside the separator, mainly in the gas phase, because introduce significant errors in the measurement system (e.g.: overrange error). The flow gas analysis proposed in this work is based on two mathematical models used together: i) a plunger lift well model proposed by Baruzzi [1] with later modifications made by Bolonhini [2] to built a plunger lift simulator; ii) a two-phase separator model (gas + liquid) based from a three-phase separator model (gas + oil + water) proposed by Nunes [3]. Based on the models above and with field data collected from the well test separator of PUB-02 platform (Ubarana sea field) it was possible to demonstrate that the output gas flow of the separator can be estimate, with a reasonable precision, from the control signal of the Pressure Control Valve (PCV). Several models of the System Identification Toolbox from MATLAB® were analyzed to evaluate which one better fit to the data collected from the field. For validation of the models, it was used the AIC criterion, as well as a variant of the cross validation criterion. The ARX model performance was the best one to fit to the data and, this way, we decided to evaluate a recursive algorithm (RARX) also with real time data. The results were quite promising that indicating the viability to estimate the output gas flow rate from a plunger lift well producing to a well test separator, with the built-in information of the control signal to the PCV
Resumo:
In the recovering process of oil, rock heterogeneity has a huge impact on how fluids move in the field, defining how much oil can be recovered. In order to study this variability, percolation theory, which describes phenomena involving geometry and connectivity are the bases, is a very useful model. Result of percolation is tridimensional data and have no physical meaning until visualized in form of images or animations. Although a lot of powerful and sophisticated visualization tools have been developed, they focus on generation of planar 2D images. In order to interpret data as they would be in the real world, virtual reality techniques using stereo images could be used. In this work we propose an interactive and helpful tool, named ZSweepVR, based on virtual reality techniques that allows a better comprehension of volumetric data generated by simulation of dynamic percolation. The developed system has the ability to render images using two different techniques: surface rendering and volume rendering. Surface rendering is accomplished by OpenGL directives and volume rendering is accomplished by the Zsweep direct volume rendering engine. In the case of volumetric rendering, we implemented an algorithm to generate stereo images. We also propose enhancements in the original percolation algorithm in order to get a better performance. We applied our developed tools to a mature field database, obtaining satisfactory results. The use of stereoscopic and volumetric images brought valuable contributions for the interpretation and clustering formation analysis in percolation, what certainly could lead to better decisions about the exploration and recovery process in oil fields
Resumo:
Most algorithms for state estimation based on the classical model are just adequate for use in transmission networks. Few algorithms were developed specifically for distribution systems, probably because of the little amount of data available in real time. Most overhead feeders possess just current and voltage measurements at the middle voltage bus-bar at the substation. In this way, classical algorithms are of difficult implementation, even considering off-line acquired data as pseudo-measurements. However, the necessity of automating the operation of distribution networks, mainly in regard to the selectivity of protection systems, as well to implement possibilities of load transfer maneuvers, is changing the network planning policy. In this way, some equipments incorporating telemetry and command modules have been installed in order to improve operational features, and so increasing the amount of measurement data available in real-time in the System Operation Center (SOC). This encourages the development of a state estimator model, involving real-time information and pseudo-measurements of loads, that are built from typical power factors and utilization factors (demand factors) of distribution transformers. This work reports about the development of a new state estimation method, specific for radial distribution systems. The main algorithm of the method is based on the power summation load flow. The estimation is carried out piecewise, section by section of the feeder, going from the substation to the terminal nodes. For each section, a measurement model is built, resulting in a nonlinear overdetermined equations set, whose solution is achieved by the Gaussian normal equation. The estimated variables of a section are used as pseudo-measurements for the next section. In general, a measurement set for a generic section consists of pseudo-measurements of power flows and nodal voltages obtained from the previous section or measurements in real-time, if they exist -, besides pseudomeasurements of injected powers for the power summations, whose functions are the load flow equations, assuming that the network can be represented by its single-phase equivalent. The great advantage of the algorithm is its simplicity and low computational effort. Moreover, the algorithm is very efficient, in regard to the accuracy of the estimated values. Besides the power summation state estimator, this work shows how other algorithms could be adapted to provide state estimation of middle voltage substations and networks, namely Schweppes method and an algorithm based on current proportionality, that is usually adopted for network planning tasks. Both estimators were implemented not only as alternatives for the proposed method, but also looking for getting results that give support for its validation. Once in most cases no power measurement is performed at beginning of the feeder and this is required for implementing the power summation estimations method, a new algorithm for estimating the network variables at the middle voltage bus-bar was also developed
Resumo:
Large efforts have been maden by the scientific community on tasks involving locomotion of mobile robots. To execute this kind of task, we must develop to the robot the ability of navigation through the environment in a safe way, that is, without collisions with the objects. In order to perform this, it is necessary to implement strategies that makes possible to detect obstacles. In this work, we deal with this problem by proposing a system that is able to collect sensory information and to estimate the possibility for obstacles to occur in the mobile robot path. Stereo cameras positioned in parallel to each other in a structure coupled to the robot are employed as the main sensory device, making possible the generation of a disparity map. Code optimizations and a strategy for data reduction and abstraction are applied to the images, resulting in a substantial gain in the execution time. This makes possible to the high level decision processes to execute obstacle deviation in real time. This system can be employed in situations where the robot is remotely operated, as well as in situations where it depends only on itself to generate trajectories (the autonomous case)
Resumo:
Breast cancer, despite being one of the leading causes of death among women worldwide is a disease that can be cured if diagnosed early. One of the main techniques used in the detection of breast cancer is the Fine Needle Aspirate FNA (aspiration puncture by thin needle) which, depending on the clinical case, requires the analysis of several medical specialists for the diagnosis development. However, such diagnosis and second opinions have been hampered by geographical dispersion of physicians and/or the difficulty in reconciling time to undertake work together. Within this reality, this PhD thesis uses computational intelligence in medical decision-making support for remote diagnosis. For that purpose, it presents a fuzzy method to assist the diagnosis of breast cancer, able to process and sort data extracted from breast tissue obtained by FNA. This method is integrated into a virtual environment for collaborative remote diagnosis, whose model was developed providing for the incorporation of prerequisite Modules for Pre Diagnosis to support medical decision. On the fuzzy Method Development, the process of knowledge acquisition was carried out by extraction and analysis of numerical data in gold standard data base and by interviews and discussions with medical experts. The method has been tested and validated with real cases and, according to the sensitivity and specificity achieved (correct diagnosis of tumors, malignant and benign respectively), the results obtained were satisfactory, considering the opinions of doctors and the quality standards for diagnosis of breast cancer and comparing them with other studies involving breast cancer diagnosis by FNA.
Resumo:
Due to the current need of the industry to integrate data of the beginning of production originating from of several sources and of transforming them in useful information for sockets of decisions, a search exists every time larger for systems of visualization of information that come to collaborate with that functionality. On the other hand, a common practice nowadays, due to the high competitiveness of the market, it is the development of industrial systems that possess characteristics of modularity, distribution, flexibility, scalability, adaptation, interoperability, reusability and access through web. Those characteristics provide an extra agility and a larger easiness in adapting to the frequent changes of demand of the market. Based on the arguments exposed above, this work consists of specifying a component-based architecture, with the respective development of a system based on that architecture, for the visualization of industrial data. The system was conceived to be capable to supply on-line information and, optionally, historical information of variables originating from of the beginning of production. In this work it is shown that the component-based architecture developed possesses the necessary requirements for the obtaining of a system robust, reliable and of easy maintenance, being, like this, in agreement with the industrial needs. The use of that architecture allows although components can be added, removed or updated in time of execution, through a manager of components through web, still activating more the adaptation process and updating of the system
Resumo:
This work describes the study and the implementation of the speed control for a three-phase induction motor of 1,1 kW and 4 poles using the neural rotor flux estimation. The vector speed control operates together with the winding currents controller of the stator phasis. The neural flux estimation applied to the vector speed controls has the objective of compensating the parameter dependences of the conventional estimators in relation to the parameter machine s variations due to the temperature increases or due to the rotor magnetic saturation. The implemented control system allows a direct comparison between the respective responses of the speed controls to the machine oriented by the neural rotor flux estimator in relation to the conventional flux estimator. All the system control is executed by a program developed in the ANSI C language. The main DSP recources used by the system are, respectively, the Analog/Digital channels converters, the PWM outputs and the parallel and RS-232 serial interfaces, which are responsible, respectively, by the DSP programming and the data capture through the supervisory system
Resumo:
Simulations based on cognitively rich agents can become a very intensive computing task, especially when the simulated environment represents a complex system. This situation becomes worse when time constraints are present. This kind of simulations would benefit from a mechanism that improves the way agents perceive and react to changes in these types of environments. In other worlds, an approach to improve the efficiency (performance and accuracy) in the decision process of autonomous agents in a simulation would be useful. In complex environments, and full of variables, it is possible that not every information available to the agent is necessary for its decision-making process, depending indeed, on the task being performed. Then, the agent would need to filter the coming perceptions in the same as we do with our attentions focus. By using a focus of attention, only the information that really matters to the agent running context are perceived (cognitively processed), which can improve the decision making process. The architecture proposed herein presents a structure for cognitive agents divided into two parts: 1) the main part contains the reasoning / planning process, knowledge and affective state of the agent, and 2) a set of behaviors that are triggered by planning in order to achieve the agent s goals. Each of these behaviors has a runtime dynamically adjustable focus of attention, adjusted according to the variation of the agent s affective state. The focus of each behavior is divided into a qualitative focus, which is responsible for the quality of the perceived data, and a quantitative focus, which is responsible for the quantity of the perceived data. Thus, the behavior will be able to filter the information sent by the agent sensors, and build a list of perceived elements containing only the information necessary to the agent, according to the context of the behavior that is currently running. Based on the human attention focus, the agent is also dotted of a affective state. The agent s affective state is based on theories of human emotion, mood and personality. This model serves as a basis for the mechanism of continuous adjustment of the agent s attention focus, both the qualitative and the quantative focus. With this mechanism, the agent can adjust its focus of attention during the execution of the behavior, in order to become more efficient in the face of environmental changes. The proposed architecture can be used in a very flexibly way. The focus of attention can work in a fixed way (neither the qualitative focus nor the quantitaive focus one changes), as well as using different combinations for the qualitative and quantitative foci variation. The architecture was built on a platform for BDI agents, but its design allows it to be used in any other type of agents, since the implementation is made only in the perception level layer of the agent. In order to evaluate the contribution proposed in this work, an extensive series of experiments were conducted on an agent-based simulation over a fire-growing scenario. In the simulations, the agents using the architecture proposed in this work are compared with similar agents (with the same reasoning model), but able to process all the information sent by the environment. Intuitively, it is expected that the omniscient agent would be more efficient, since they can handle all the possible option before taking a decision. However, the experiments showed that attention-focus based agents can be as efficient as the omniscient ones, with the advantage of being able to solve the same problems in a significantly reduced time. Thus, the experiments indicate the efficiency of the proposed architecture
Resumo:
In this work, we propose the Interperception paradigm, a new approach that includes a set of rules and a software architecture for merge users from different interfaces in the same virtual environment. The system detects the user resources and provide transformations on the data in order to allow its visualization in 3D, 2D and textual (1D) interfaces. This allows any user to connect, access information, and exchange information with other users in a feasible way, without needs of changing hardware or software. As results are presented two virtual environments builded acording this paradigm