Agentes Inteligentes com Foco de Atenção Afetivo em Simulações Baseadas em Agentes


Autoria(s): Signoretti, Alberto
Contribuinte(s)

Fialho, Sérgio Vianna

CPF:22234071453

http://lattes.cnpq.br/3763622223707127

CPF:31510230700

http://lattes.cnpq.br/8215124502137579

Campos, André Mauricio Cunha

CPF:00761944700

http://lattes.cnpq.br/7154508093406987

Burlamaqui, Aquiles Filgueira de Medeiros

CPF:03420818459

http://lattes.cnpq.br/8670475877813913

Canuto, Anne Magaly de Paula

CPF:66487099449

http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4790093J8

Ramalho, Geber Lisboa

CPF:06135913420

http://lattes.cnpq.br/9783292465422902

Chaimowicz, Luiz

CPF:62830732634

http://lattes.cnpq.br/4499928813481251

Data(s)

17/12/2014

18/02/2013

17/12/2014

17/08/2012

Resumo

Simulations based on cognitively rich agents can become a very intensive computing task, especially when the simulated environment represents a complex system. This situation becomes worse when time constraints are present. This kind of simulations would benefit from a mechanism that improves the way agents perceive and react to changes in these types of environments. In other worlds, an approach to improve the efficiency (performance and accuracy) in the decision process of autonomous agents in a simulation would be useful. In complex environments, and full of variables, it is possible that not every information available to the agent is necessary for its decision-making process, depending indeed, on the task being performed. Then, the agent would need to filter the coming perceptions in the same as we do with our attentions focus. By using a focus of attention, only the information that really matters to the agent running context are perceived (cognitively processed), which can improve the decision making process. The architecture proposed herein presents a structure for cognitive agents divided into two parts: 1) the main part contains the reasoning / planning process, knowledge and affective state of the agent, and 2) a set of behaviors that are triggered by planning in order to achieve the agent s goals. Each of these behaviors has a runtime dynamically adjustable focus of attention, adjusted according to the variation of the agent s affective state. The focus of each behavior is divided into a qualitative focus, which is responsible for the quality of the perceived data, and a quantitative focus, which is responsible for the quantity of the perceived data. Thus, the behavior will be able to filter the information sent by the agent sensors, and build a list of perceived elements containing only the information necessary to the agent, according to the context of the behavior that is currently running. Based on the human attention focus, the agent is also dotted of a affective state. The agent s affective state is based on theories of human emotion, mood and personality. This model serves as a basis for the mechanism of continuous adjustment of the agent s attention focus, both the qualitative and the quantative focus. With this mechanism, the agent can adjust its focus of attention during the execution of the behavior, in order to become more efficient in the face of environmental changes. The proposed architecture can be used in a very flexibly way. The focus of attention can work in a fixed way (neither the qualitative focus nor the quantitaive focus one changes), as well as using different combinations for the qualitative and quantitative foci variation. The architecture was built on a platform for BDI agents, but its design allows it to be used in any other type of agents, since the implementation is made only in the perception level layer of the agent. In order to evaluate the contribution proposed in this work, an extensive series of experiments were conducted on an agent-based simulation over a fire-growing scenario. In the simulations, the agents using the architecture proposed in this work are compared with similar agents (with the same reasoning model), but able to process all the information sent by the environment. Intuitively, it is expected that the omniscient agent would be more efficient, since they can handle all the possible option before taking a decision. However, the experiments showed that attention-focus based agents can be as efficient as the omniscient ones, with the advantage of being able to solve the same problems in a significantly reduced time. Thus, the experiments indicate the efficiency of the proposed architecture

Simulações baseadas em agentes cognitivos podem se tornar tarefas computacionalmente intensivas, especialmente quando o ambiente de simulação é um sistema complexo. Este panorama se torna pior na medida em que restrições de tempo são adotadas. Simulações desse tipo seriam beneficiadas por um mecanismo que melhorasse o modo pelo qual os agentes percebem e reagem a mudanças nesses tipos de ambiente. Ou seja, uma abordagem para melhorar a eficiência (desempenho e acurácia) no processo de decisão de agentes autônomos em uma simulação, seria útil. Em ambientes complexos e repletos de variáveis, é possível que nem todas as informações disponíveis para o agente sejam necessárias para o seu processo de decisão, dependendo, é claro, da tarefa que esteja sendo executada. O agente precisaria filtrar as informações que lhe chegam, assim como nós o fazemos com o nosso foco de atenção. Com a utilização de um foco de atenção, somente as informações importantes ao contexto de execução do agente são percebidas (processadas cognitivamente), o que pode melhorar o processo de decisão. A arquitetura proposta neste trabalho apresenta uma estrutura de agentes cognitivos dividida em duas partes: 1) uma parte principal contendo o raciocínio/planejamento, o conhecimento e o estado afetivo do agente e, 2) um conjunto de comportamentos que serão acionados pelo planejamento com o intuito de atingir os objetivos do agente. Cada um desses comportamentos possui um foco de atenção ajustável dinamicamente durante o tempo de execução do agente, de acordo com a variação do seu estado afetivo. O foco de atenção presente em cada comportamento é dividido em foco qualitativo, o qual é responsável pela qualidade dos dados percebidos, e foco quantitativo, o qual é responsável pela quantidade dos dados percebidos. Desse modo, o comportamento será capaz de filtrar as informações enviadas pelos sensores dos agentes e construir uma lista de elementos, contendo somente as informações necessárias ao agente, dependendo do contexto do comportamento em execução no momento. Com base no mecanismo de foco de atenção humano, o agente também é dotado de um estado afetivo. O estado afetivo do agente é baseado nas teorias humanas da emoção, humor e personalidade. Esse modelo atua como base para o mecanismo de ajuste contínuo do foco de atenção do agente, tanto da parte qualitativa, como da parte quantitativa. Com esse mecanismo, o agente pode ajustar o seu foco de atenção durante a execução do comportamento, de forma a tornar-se mais eficiente perante as mudanças ocorridas no ambiente. A arquitetura proposta pode ser utilizada de forma bastante flexível. O foco de atenção pode trabalhar tanto de forma fixa (onde nem o foco qualitativo e nem o quantitativo variam), quanto com diferentes combinações entre a variação ou não dos focos qualitativo e quantitativo. A arquitetura foi desenvolvida sobre uma plataforma para agentes BDI, mas o seu projeto permite que seja usada em qualquer outro tipo de agente, pois as alterações são feitas apenas no nível da percepção do agente. Para avaliar a contribuição do trabalho, uma série extensa de experimentos foram realizados sobre uma simulação baseada em agentes num cenário de incêndio. Nas simulações, agentes utilizando a arquitetura proposta neste trabalho são comparados com agentes similares (com o mesmo modelo de raciocínio), porém capazes de processar todas as informações que lhes são enviadas pelo ambiente (agentes oniscientes). Intuitivamente, é de se imaginar os agentes oniscientes seriam mais eficiente que os com filtros de percepção, uma vez que eles podem processar todas as opções possíveis antes de tomar uma decisão. Porém, os experimentos mostram que os agentes com foco de atenção podem ser tão eficientes quanto os oniscientes, levando vantagem porém na capacidade de resolverem o mesmo problema em um tempo significativamente menor. Os experimentos indicam, portanto, a eficiência da arquitetura proposta

Formato

application/pdf

Identificador

SIGNORETTI, Alberto. Agentes Inteligentes com Foco de Atenção Afetivo em Simulações Baseadas em Agentes. 2012. 229 f. Tese (Doutorado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2012.

http://repositorio.ufrn.br:8080/jspui/handle/123456789/15194

Idioma(s)

por

Publicador

Universidade Federal do Rio Grande do Norte

BR

UFRN

Programa de Pós-Graduação em Engenharia Elétrica

Automação e Sistemas; Engenharia de Computação; Telecomunicações

Direitos

Acesso Aberto

Palavras-Chave #simulação baseada em agentes #agentes afetivos #foco de atenção dinâmico #agent based simulation #affective agents #dynamic attention focus #organizational simulation #CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Tipo

Tese