945 resultados para Antigens, Helminth
Resumo:
Previous reports of an association between HLA tissue type and Wegener's granulomatosis are contradictory. By using for the first time a highly sensitive restriction fragment-length polymorphism (RFLP) analysis in addition to standard microcytotoxicity assays, the largest series yet investigated (41 patients) was tissue typed. No association was found between any specific HLA antigen and Wegener's granulomatosis. Although the condition appears to be immunologically mediated, this study indicates that the HLA antigens do not have a major role.
Resumo:
Helminth parasites (nematodes, flatworms and cestodes) infect over 1 billion of the world's population causing high morbidity and mortality. The large tissue-dwelling worms express papain-like cysteine peptidases, termed cathepsins that play important roles in virulence including host entry, tissue migration and the suppression of host immune responses. Much of our knowledge of helminth cathepsins comes from studies using flatworms or trematode (fluke) parasites. The developmentally-regulated expression of these proteases correlates with the passage of parasites through host tissues and their encounters with different host macromolecules. Recent phylogenetic, biochemical and structural studies indicate that trematode cathepsins exhibit overlapping but distinct substrate specificities due to divergence within the protease active site. Here we provide an overview of the evolution, biochemistry and structure of these important enzymes and highlight how recent advances in proteomics and gene silencing techniques are allowing researchers to probe their biological functions. We focus mainly on members of the cathepsin L gene family of the animal and human pathogen, Fasciola hepatica, because of our deep understanding of their function, biochemistry and structure.
Resumo:
The helminth parasite Fasciola hepatica secretes cathepsin L cysteine proteases to invade its host, migrate through tissues and digest haemoglobin, its main source of amino acids. Here we investigated the importance of pH in regulating the activity and functions of the major cathepsin L protease FheCL1. The slightly acidic pH of the parasite gut facilitates the auto-catalytic activation of FheCL1 from its inactive proFheCL1 zymogen; this process was approximately 40-fold faster at pH 4.5 than at pH 7.0. Active mature FheCL1 is very stable at acidic and neutral conditions (the enzyme retained approximately 45% activity when incubated at 37 degrees C and pH 4.5 for 10 days) and displayed a broad pH range for activity peptide substrates and the protein ovalbumin, peaking between pH 5.5 and pH 7.0. This pH profile likely reflects the need for FheCL1 to function both in the parasite gut and in the host tissues. FheCL1, however, could not cleave its natural substrate Hb in the pH range pH 5.5 and pH 7.0; digestion occurred only at pH
Resumo:
The helminth parasite Fasciola hepatica secretes cysteine proteases to facilitate tissue invasion, migration, and development within the mammalian host. The major proteases cathepsin L1 (FheCL1) and cathepsin L2 (FheCL2) were recombinantly produced and biochemically characterized. By using site-directed mutagenesis, we show that residues at position 67 and 205, which lie within the S2 pocket of the active site, are critical in determining the substrate and inhibitor specificity. FheCL1 exhibits a broader specificity and a higher substrate turnover rate compared with FheCL2. However, FheCL2 can efficiently cleave substrates with a Pro in the P2 position and degrade collagen within the triple helices at physiological pH, an activity that among cysteine proteases has only been reported for human cathepsin K. The 1.4-A three-dimensional structure of the FheCL1 was determined by x-ray crystallography, and the three-dimensional structure of FheCL2 was constructed via homology-based modeling. Analysis and comparison of these structures and our biochemical data with those of human cathepsins L and K provided an interpretation of the substrate-recognition mechanisms of these major parasite proteases. Furthermore, our studies suggest that a configuration involving residue 67 and the "gatekeeper" residues 157 and 158 situated at the entrance of the active site pocket create a topology that endows FheCL2 with its unusual collagenolytic activity. The emergence of a specialized collagenolytic function in Fasciola likely contributes to the success of this tissue-invasive parasite.
Resumo:
The success of helminth parasites is partly related to their ability to modulate host immune responses towards an anti-inflammatory/regulatory phenotype. This ability resides with the molecules contained in the secretome of various helminths that have been shown to interact with host immune cells and influence their function. Consequently, there exists a unique opportunity to exploit these molecules for the prophylactic and therapeutic treatment of human pro- and auto-inflammatory disorders (for example septic shock, transplant rejection and autoimmune disease). In this review, we describe the mechanisms used by the trematode parasite, Fasciola hepatica, to modulate the immune responses of its host and discuss the potent immune-modulatory effects of three individual molecules within the secretome; namely cathepsin L1, peroxiredoxin and helminth defence molecule. With a focus on the requirements from industry, we discuss the strategies by which these molecules may be clinically developed to control human immune responses in a way that is conducive to the prevention of immune-mediated diseases.
Resumo:
Aging has been shown to be accompanied by various changes in the lymphocyte subset distribution in the elderly. We have investigated more fully, and in a large number of subjects, age-related changes within several subpopulations bearing natural killer (NK) cell-associated surface antigens and changes in several cytokines involved in NK cell expansion. A total of 229 healthy subjects from all decades of life from 20 to 98 years of age was included in this cross-sectional study. A significant increase with age was found in both the absolute counts and the proportions of CD3-CD(16+56)+, CD3+CD(16+56)+, CD57+CD8+, CD57+CD8(low)+, and CD57+CD8- cells, whereas the CD57+CD8(high)+ subset, which may represent the cytolytic T cell population more precisely, showed less change with age. Some evidence is also provided to suggest that these expanded NK cell populations are in an activated state. Soluble IL-2 receptor levels were also found to increase significantly with age and correlated with certain NK cell subsets. Although the functions of some of these subsets remain to be elucidated, their expansion in the elderly may represent a remodeling of the immune system with increasing age, with an increase in non-MHC-restricted cells perhaps compensating for the previously reported decline in T and B cells in the elderly. Alternatively, increased numbers of these cells may be a direct result of cytokine dysregulation or increased antigenic or neoplastic cell challenge.
Resumo:
Antibodies to neutrophil cytoplasmic antigens (ANCA) are good serological markers for patients with mainly vasculitic conditions. Two main types of ANCAs have been detected, the first termed cytoplasmic antineutrophil cytoplasmic antibody (cANCA) are mainly associated with patients with Wegener's granulomatosis, the other termed perinuclear antineutrophil cytoplasmic antibody (pANCA) are mainly associated with patients with renal vasculitis, rheumatic and collagen disorders. These antibodies are against various constituents of neutrophil granules. In patients with myelodysplasia, defects in normal granulocyte development are seen. We report a series of twelve patients with myelodysplasia of whom at least four showed a low titre and one a high titre of pANCA. Two of these patients also had demonstrable activity against myeloperoxidase (MPO). None of these patients had any evidence of systemic or cutaneous vasculitis or of any autoimmune disorder. There was no pANCA positivity in an age matched control group.
Resumo:
In this study, the changes in some of the cellular components of the immune system and the activity of the cytokine interleukin 2, important for immune activation and lymphocyte proliferation, were measured in a large cross-sectional study of all age groups including octogenarian and nonagenarian subjects. In 206 apparently well community-living subjects, the absolute lymphocyte count and T and B cell numbers fell a little in old and very old subjects. Within the T cell compartment, helper/inducer CD4+ T cells, together with their subsets identified as 'naive' (CD4+/CD45RA+) and 'memory' (CD4+/CD45RO+) cells, also showed a decline with increased age. The suppressor/cytotoxic CD8+ subset showed no age-related change. The levels of the cytokine interleukin 2 were very low in octogenarian and nonagenarian subjects, while the soluble interleukin 2 receptor levels increased with increasing age. The interleukin 2 levels were associated with number and percentage of the 'memory' (CD4+/CD45RO+) subset of T cells which mediates the host response to previously met antigens. Since the interleukin 2 values were very low in the oldest groups and were associated with a reduced 'memory' (CD4+/CD45RO+) compartment, this suggests a possible mechanism of why the very elderly subject is more susceptible to morbidity and mortality from infectious or other agents.
Resumo:
To study whether individual Human Leucocyte Antigens (HLA) at the HLA 1 or 11 loci or the phenotypic combination A1B8Cw7DR3 were associated with longevity.
Resumo:
The eye and the brain are prototypical tissues manifesting immune privilege (IP) in which immune responses to foreign antigens, particularly alloantigens are suppressed, and even completely inhibited. Explanations for this phenomenon are numerous and mostly reflect our evolving understanding of the molecular and cellular processes underpinning immunological responses generally. IP is now viewed as a property of many tissues and the level of expression of IP varies not only with the tissue but with the nature of the foreign antigen and changes in the limited conditions under which privilege can operate as a mechanism of immunological tolerance. As a result, IP functions normally as a homeostatic mechanism preserving normal function in tissues, particularly those with highly specialized function and limited capacity for renewal such as the eye and brain. However, IP is relatively easily bypassed in the face of a sufficiently strong immunological response, and the privileged tissues may be at greater risk of collateral damage because its natural defenses are more easily breached than in a fully immunocompetent tissue which rapidly rejects foreign antigen and restores integrity. This two-edged sword cuts its swathe through the eye: under most circumstances, IP mechanisms such as blood-ocular barriers, intraocular immune modulators, induction of T regulatory cells, lack of lymphatics, and other properties maintain tissue integrity; however, when these are breached, various degrees of tissue damage occur from severe tissue destruction in retinal viral infections and other forms of uveoretinal inflammation, to less severe inflammatory responses in conditions such as macular degeneration. Conversely, ocular IP and tumor-related IP can combine to permit extensive tumor growth and increased risk of metastasis thus threatening the survival of the host.
Resumo:
The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specifically to contiguous DC networks within the skin. Following in situ uptake, skin-resident DCs were able to deliver antigen-encapsulated poly-d,l-lactide-co-glycolide (PGLA) nanoparticles to cutaneous draining lymph nodes where they subsequently induced significant expansion of antigen-specific T cells. Moreover, we show that antigen-encapsulated nanoparticle vaccination via microneedles generated robust antigen-specific cellular immune responses in mice. This approach provided complete protection in vivo against both the development of antigen-expressing B16 melanoma tumors and a murine model of para-influenza, through the activation of antigen-specific cytotoxic CD8(+) T cells that resulted in efficient clearance of tumors and virus, respectively. In addition, we show promising findings that nanoencapsulation facilitates antigen retention into skin layers and provides antigen stability in microneedles. Therefore, the use of biodegradable polymeric nanoparticles for selective targeting of antigen to skin DC subsets through dissolvable MNs provides a promising technology for improved vaccination efficacy, compliance, and coverage.
Resumo:
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by hypogammaglobulinaemia and antibody deficiency to both T dependent and independent antigens. Patients suffer from recurrent sinopulmonary infections mostly caused by Streptococcus pneumoniae and Haemophilus influenzae, but also gastrointestinal or autoimmune symptoms. Their response to vaccination is poor or absent. In this study we investigated B cell activation induced by the TLR9 specific ligand (CpG-ODN) and bacterial extracts from S. pneumoniae and H. influenzae known to stimulate several TLR. We found that B cells from CVID patients express lower levels of CD86 after stimulation with CpG-ODN, S. pneumoniae and H. influenzae extracts in combination with anti-IgM antibody and also display a lower proliferative index when stimulated with bacterial extracts. Our results point to a broad TLR signalling defect in B lymphocytes from CVID patients that may be related to the hypogammaglobulinaemia and poor response to vaccination characteristic of these patients.
Resumo:
The potential of a microparticulate vaccine delivery system in eliciting a specific mucosal antibody response in the respiratory tract of mice was evaluated. Two vaccine candidate peptides representing epitopes from the G attachment and F fusion antigens from bovine respiratory syncytial virus (BRSV) were encapsulated into poly(dl- lactide co-glycolide) biodegradable microparticles. The encapsulation process did not denature the entrapped peptides as verified by detection of peptide-specific antibodies in mucosal secretions by ELISA using peptide as antigen. Following intranasal immunisation, the encapsulated peptides induced stronger upper and lower respiratory tract specific-IgA responses, respectively, than the soluble peptide forms. Moreover, a strong peptide-specific cell-mediated immune response was measured in splenocytes in vitro from the mice inoculated with the encapsulated peptides compared to their soluble form alone indicating that migration of primed T cells had taken place from the site of mucosal stimulation in the upper respiratory tract to the spleen. These results act as a foundation for vaccine efficacy studies in large animal BRSV challenge models.
Resumo:
Norovirus infection is the leading cause of acute nonbacterial gastroenteritis. Histoblood group antigens (HBGAs) are host susceptibility determinants for Norwalk virus (NV) infection. We hypothesized that antibodies that block NV-HBGA binding are associated with protection from clinical illness following NV exposure.
Resumo:
Rotavirus nonstructural protein 4 (NSP4) is a protein with pleiotropic properties. It functions in rotavirus morphogenesis, pathogenesis, and is the first described viral enterotoxin. Since many bacterial toxins function as potent mucosal adjuvants, we evaluated whether baculovirus-expressed recombinant simian rotavirus SA11 NSP4 possesses adjuvant activity by co-administering NSP4 with keyhole limpet hemocyanin (KLH), tetanus toxoid (TT) or ovalbumin (OVA) as model antigens in mice. Following intranasal immunization, NSP4 significantly enhanced both systemic and mucosal immune responses to model immunogens, as compared to the control group, in an antigen-specific manner. Both full-length and a cleavage product of SA11 NSP4 had adjuvant activity, localizing this activity to the C-terminus of the protein. NSP4 forms from virulent and avirulent porcine rotavirus OSU strain, and SA11 NSP4 localized within a 2/6-virus-like particle (VLP) also exhibited adjuvant effects. These studies suggest that the rotavirus enterotoxin NSP4 can function as an adjuvant to enhance immune responses for a co-administered antigen.