889 resultados para Advertising.
Resumo:
Traditional media are under assault from digital technologies. Online advertising is eroding the financial basis of newspapers and television, demarcations between different forms of media are fading, and audiences are fragmenting. We can podcast our favourite radio show, data accompanies television programs, and we catch up with newspaper stories on our laptops. Yet mainstream media remain enormously powerful. The Media and Communications in Australia offers a systematic introduction to this dynamic field. Fully updated and revised to take account of recent developments, this third edition outlines the key media industries and explains how communications technologies are impacting on them. It provides a thorough overview of the main approaches taken in studying the media, and includes new chapters on social media, gaming, telecommunications, sport and cultural diversity. With contributions from some of Australia's best researchers and teachers in the field, The Media and Communications in Australia is the most comprehensive and reliable introduction to media and communications available. It is an ideal student text, and a reference for teachers of media and anyone interested in this influential industry.
Resumo:
This paper presents an object tracking system that utilises a hybrid multi-layer motion segmentation and optical flow algorithm. While many tracking systems seek to combine multiple modalities such as motion and depth or multiple inputs within a fusion system to improve tracking robustness, current systems have avoided the combination of motion and optical flow. This combination allows the use of multiple modes within the object detection stage. Consequently, different categories of objects, within motion or stationary, can be effectively detected utilising either optical flow, static foreground or active foreground information. The proposed system is evaluated using the ETISEO database and evaluation metrics and compared to a baseline system utilising a single mode foreground segmentation technique. Results demonstrate a significant improvement in tracking results can be made through the incorporation of the additional motion information.
Resumo:
Automated crowd counting allows excessive crowding to be detected immediately, without the need for constant human surveillance. Current crowd counting systems are location specific, and for these systems to function properly they must be trained on a large amount of data specific to the target location. As such, configuring multiple systems to use is a tedious and time consuming exercise. We propose a scene invariant crowd counting system which can easily be deployed at a different location to where it was trained. This is achieved using a global scaling factor to relate crowd sizes from one scene to another. We demonstrate that a crowd counting system trained at one viewpoint can achieve a correct classification rate of 90% at a different viewpoint.
Resumo:
Performance evaluation of object tracking systems is typically performed after the data has been processed, by comparing tracking results to ground truth. Whilst this approach is fine when performing offline testing, it does not allow for real-time analysis of the systems performance, which may be of use for live systems to either automatically tune the system or report reliability. In this paper, we propose three metrics that can be used to dynamically asses the performance of an object tracking system. Outputs and results from various stages in the tracking system are used to obtain measures that indicate the performance of motion segmentation, object detection and object matching. The proposed dynamic metrics are shown to accurately indicate tracking errors when visually comparing metric results to tracking output, and are shown to display similar trends to the ETISEO metrics when comparing different tracking configurations.
Resumo:
Soft biometrics are characteristics that can be used to describe, but not uniquely identify an individual. These include traits such as height, weight, gender, hair, skin and clothing colour. Unlike traditional biometrics (i.e. face, voice) which require cooperation from the subject, soft biometrics can be acquired by surveillance cameras at range without any user cooperation. Whilst these traits cannot provide robust authentication, they can be used to provide coarse authentication or identification at long range, locate a subject who has been previously seen or who matches a description, as well as aid in object tracking. In this paper we propose three part (head, torso, legs) height and colour soft biometric models, and demonstrate their verification performance on a subset of the PETS 2006 database. We show that these models, whilst not as accurate as traditional biometrics, can still achieve acceptable rates of accuracy in situations where traditional biometrics cannot be applied.
Resumo:
Accurate road lane information is crucial for advanced vehicle navigation and safety applications. With the increasing of very high resolution (VHR) imagery of astonishing quality provided by digital airborne sources, it will greatly facilitate the data acquisition and also significantly reduce the cost of data collection and updates if the road details can be automatically extracted from the aerial images. In this paper, we proposed an effective approach to detect road lanes from aerial images with employment of the image analysis procedures. This algorithm starts with constructing the (Digital Surface Model) DSM and true orthophotos from the stereo images. Next, a maximum likelihood clustering algorithm is used to separate road from other ground objects. After the detection of road surface, the road traffic and lane lines are further detected using texture enhancement and morphological operations. Finally, the generated road network is evaluated to test the performance of the proposed approach, in which the datasets provided by Queensland department of Main Roads are used. The experiment result proves the effectiveness of our approach.
Resumo:
This paper proposes the use of the Bayes Factor to replace the Bayesian Information Criterion (BIC) as a criterion for speaker clustering within a speaker diarization system. The BIC is one of the most popular decision criteria used in speaker diarization systems today. However, it will be shown in this paper that the BIC is only an approximation to the Bayes factor of marginal likelihoods of the data given each hypothesis. This paper uses the Bayes factor directly as a decision criterion for speaker clustering, thus removing the error introduced by the BIC approximation. Results obtained on the 2002 Rich Transcription (RT-02) Evaluation dataset show an improved clustering performance, leading to a 14.7% relative improvement in the overall Diarization Error Rate (DER) compared to the baseline system.
Resumo:
The following paper presents an evaluation of airborne sensors for use in vegetation management in powerline corridors. Three integral stages in the management process are addressed including, the detection of trees, relative positioning with respect to the nearest powerline and vegetation height estimation. Image data, including multi-spectral and high resolution, are analyzed along with LiDAR data captured from fixed wing aircraft. Ground truth data is then used to establish the accuracy and reliability of each sensor thus providing a quantitative comparison of sensor options. Tree detection was achieved through crown delineation using a Pulse-Coupled Neural Network (PCNN) and morphologic reconstruction applied to multi-spectral imagery. Through testing it was shown to achieve a detection rate of 96%, while the accuracy in segmenting groups of trees and single trees correctly was shown to be 75%. Relative positioning using LiDAR achieved a RMSE of 1.4m and 2.1m for cross track distance and along track position respectively, while Direct Georeferencing achieved RMSE of 3.1m in both instances. The estimation of pole and tree heights measured with LiDAR had a RMSE of 0.4m and 0.9m respectively, while Stereo Matching achieved 1.5m and 2.9m. Overall a small number of poles were missed with detection rates of 98% and 95% for LiDAR and Stereo Matching.
Resumo:
The performance of iris recognition systems is significantly affected by the segmentation accuracy, especially in non- ideal iris images. This paper proposes an improved method to localise non-circular iris images quickly and accurately. Shrinking and expanding active contour methods are consolidated when localising inner and outer iris boundaries. First, the pupil region is roughly estimated based on histogram thresholding and morphological operations. There- after, a shrinking active contour model is used to precisely locate the inner iris boundary. Finally, the estimated inner iris boundary is used as an initial contour for an expanding active contour scheme to find the outer iris boundary. The proposed scheme is robust in finding exact the iris boundaries of non-circular and off-angle irises. In addition, occlusions of the iris images from eyelids and eyelashes are automatically excluded from the detected iris region. Experimental results on CASIA v3.0 iris databases indicate the accuracy of proposed technique.
Resumo:
Appearance-based mapping and localisation is especially challenging when separate processes of mapping and localisation occur at different times of day. The problem is exacerbated in the outdoors where continuous change in sun angle can drastically affect the appearance of a scene. We confront this challenge by fusing the probabilistic local feature based data association method of FAB-MAP with the pose cell filtering and experience mapping of RatSLAM. We evaluate the effectiveness of our amalgamation of methods using five datasets captured throughout the day from a single camera driven through a network of suburban streets. We show further results when the streets are re-visited three weeks later, and draw conclusions on the value of the system for lifelong mapping.
Resumo:
A novel H-bridge multilevel PWM converter topology based on a series connection of a high voltage (HV) diode-clamped inverter and a low voltage (LV) conventional inverter is proposed. A DC link voltage arrangement for the new hybrid and asymmetric solution is presented to have a maximum number of output voltage levels by preserving the adjacent switching vectors between voltage levels. Hence, a fifteen-level hybrid converter can be attained with a minimum number of power components. A comparative study has been carried out to present high performance of the proposed configuration to approach a very low THD of voltage and current, which leads to the possible elimination of output filter. Regarding the proposed configuration, a new cascade inverter is verified by cascading an asymmetrical diode-clamped inverter, in which nineteen levels can be synthesized in output voltage with the same number of components. To balance the DC link capacitor voltages for the maximum output voltage resolution as well as synthesise asymmetrical DC link combination, a new Multi-output Boost (MOB) converter is utilised at the DC link voltage of a seven-level H-bridge diode-clamped inverter. Simulation and hardware results based on different modulations are presented to confirm the validity of the proposed approach to achieve a high quality output voltage.
Resumo:
This paper proposes a clustered approach for blind beamfoming from ad-hoc microphone arrays. In such arrangements, microphone placement is arbitrary and the speaker may be close to one, all or a subset of microphones at a given time. Practical issues with such a configuration mean that some microphones might be better discarded due to poor input signal to noise ratio (SNR) or undesirable spatial aliasing effects from large inter-element spacings when beamforming. Large inter-microphone spacings may also lead to inaccuracies in delay estimation during blind beamforming. In such situations, using a cluster of microphones (ie, a sub-array), closely located both to each other and to the desired speech source, may provide more robust enhancement than the full array. This paper proposes a method for blind clustering of microphones based on the magnitude square coherence function, and evaluates the method on a database recorded using various ad-hoc microphone arrangements.
Resumo:
A Positive Buck-Boost converter is a known DC-DC converter which may be controlled to act as Buck or Boost converter with same polarity of the input voltage. This converter has four switching states which include all the switching states of the above mentioned DC-DC converters. In addition there is one switching state which provides a degree of freedom for the positive Buck-Boost converter in comparison to the Buck, Boost, and inverting Buck-Boost converters. In other words the Positive Buck-Boost Converter shows a higher level of flexibility for its inductor current control compared to the other DC-DC converters. In this paper this extra degree of freedom is utilised to increase the robustness against input voltage fluctuations and load changes. To address this capacity of the positive Buck-Boost converter, two different control strategies are proposed which control the inductor current and output voltage against any fluctuations in input voltage and load changes. Mathematical analysis for dynamic and steady state conditions are presented in this paper and simulation results verify the proposed method.
Resumo:
Stockmarket regulators in Australia, Canada and the United States have all issued recent challenges to listed companies on their disclosure practices, questioning in many cases what has been long standing practice. Financial public relations counsellors are constantly called up to advise on the communication consequences of difference disclosure strategies. This paper will explore the challenges, faced by a group of financial communicators within seven Australia listed companies, in setting and enacting disclosure polices for the organisations. It will identify hey issues involved in communicating within a regulated environment, as well as address the implications of new technology for future practice.