979 resultados para saddle point conditions
Resumo:
In this paper a solution to an highly constrained and non-convex economical dispatch (ED) problem with a meta-heuristic technique named Sensing Cloud Optimization (SCO) is presented. The proposed meta-heuristic is based on a cloud of particles whose central point represents the objective function value and the remaining particles act as sensors "to fill" the search space and "guide" the central particle so it moves into the best direction. To demonstrate its performance, a case study with multi-fuel units and valve- point effects is presented.
Resumo:
The oxovanadium(IV) complexes [VO(acac)(2)(Hpz)].HC(pz)(3) 1.HC(pz)(3) (acac= acetylacetonate, Hpz = pyrazole, pz = pyrazoly1) and [VOCl2{HOCH2C(pz)(3)}] 2 were obtained from reaction of [VO(acac)(2)] with hydrotris(1-pyrazolyl)methane or of VCl(3)with 2,2,2-tris(1-pyrazolyl)ethanol. The compounds were characterized by elemental analysis, IR, Far-IR and EPR spectroscopies, FAB or ESI mass-spectrometry and, for 1, by single crystal X-ray diffraction analysis. 1 and 2 exhibit catalytic activity for the oxidation of cyclohexane to the cyclohexanol and cyclohexanone mixture in homogeneous system (TONS up to 1100) under mild conditions (NCMe, 24h, room temperature) using benzoyl peroxide (BPO), tert-butyl hydroperoxide (TBHP), m-chloroperoxybenzoic acid (mCPBA), hydrogen peroxide or the urea-hydrogen peroxide adduct (UHP) as oxidants. 1 and 2 were also immobilized on a polydimethylsiloxane membrane (1-PDMS or 2-PDMS) and the systems acted as supported catalysts for the cyclohexane oxidation using the above oxidants (TONs up to 620). The best results were obtained with mCPBA or BP0 as oxidant. The effects of various parameters, such as the amount of catalyst, nitric acid, reaction time, type of oxidant and oxidant-to-catalyst molar ratio, were investigated, for both homogeneous and supported systems. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Tese de Doutoramento, Matemática (Investigação Operacional), 23 de Setembro de 2006, Universidade dos Açores.
Resumo:
Industrial rotating machines may be exposed to severe dynamic excitations due to resonant working regimes. Dealing with the bending vibration, problem of a machine rotor, the shaft - and attached discs - can be simply modelled using the Bernoulli-Euler beam theory, as a continuous beam subjected to a specific set of boundary conditions. In this study, the authors recall Rayleigh's method to propose an iterative strategy, which allows for the determination of natural frequencies and mode shapes of continuous beams taking into account the effect of attached concentrated masses and rotational inertias, including different stiffness coefficients at the right and the left end sides. The algorithm starts with the exact solutions from Bernoulli-Euler's beam theory, which are then updated through Rayleigh's quotient parameters. Several loading cases are examined in comparison with the experimental data and examples are presented to illustrate the validity of the model and the accuracy of the obtained values.
Resumo:
Mestrado em Engenharia Química
Resumo:
Dissertação de Mestrado apresentado ao Instituto de Contabilidade e Administração do obtenção do grau de Mestre em Auditoria Auditoria, sob orientação de Adalmiro Álvaro Malheiro de Castro Andrade
Resumo:
Projecto apresentado ao Instituto Politécnico do Porto para obtenção do Grau de Mestre em Logística Orientada por Prof. Doutor Gouveia
Resumo:
Objective - To describe and validate the simulation of the basic features of GE Millennium MG gamma camera using the GATE Monte Carlo platform. Material and methods - Crystal size and thickness, parallel-hole collimation and a realistic energy acquisition window were simulated in the GATE platform. GATE results were compared to experimental data in the following imaging conditions: a point source of 99mTc at different positions during static imaging and tomographic acquisitions using two different energy windows. The accuracy between the events expected and detected by simulation was obtained with the Mann–Whitney–Wilcoxon test. Comparisons were made regarding the measurement of sensitivity and spatial resolution, static and tomographic. Simulated and experimental spatial resolutions for tomographic data were compared with the Kruskal–Wallis test to assess simulation accuracy for this parameter. Results - There was good agreement between simulated and experimental data. The number of decays expected when compared with the number of decays registered, showed small deviation (≤0.007%). The sensitivity comparisons between static acquisitions for different distances from source to collimator (1, 5, 10, 20, 30cm) with energy windows of 126–154 keV and 130–158 keV showed differences of 4.4%, 5.5%, 4.2%, 5.5%, 4.5% and 5.4%, 6.3%, 6.3%, 5.8%, 5.3%, respectively. For the tomographic acquisitions, the mean differences were 7.5% and 9.8% for the energy window 126–154 keV and 130–158 keV. Comparison of simulated and experimental spatial resolutions for tomographic data showed no statistically significant differences with 95% confidence interval. Conclusions - Adequate simulation of the system basic features using GATE Monte Carlo simulation platform was achieved and validated.
Resumo:
Lighting is one of the most important factors in human interaction with the environment. Poor lighting may increase the risk of accidents and could also cause a variety of symptoms including: rapid fatigue, headaches, eyestrain, tired eyes, dry eyes, ocular surface symptoms (watery and irritated eyes), decreased concentration and stress. Specific disorders: degeneration of the sharpness of vision (blurred and double vision) and slowness in changing focus. Apart from the advantages in the health and welfare for the workers, good lighting also leads to better job performance (faster), less errors, better safety, fewer accidents and less absenteeism. The overall effect is: better productivity. Good lighting includes quantity and quality requirements, and should necessarily be appropriate to the activity/task being carried out, bearing in mind the comfort and visual efficiency of the worker.
Resumo:
This project was developed to fully assess the indoor air quality in archives and libraries from a fungal flora point of view. It uses classical methodologies such as traditional culture media – for the viable fungi – and modern molecular biology protocols, especially relevant to assess the non-viable fraction of the biological contaminants. Denaturing high-performance liquid chromatography (DHPLC) has emerged as an alternative to denaturing gradient gel electrophoresis (DGGE) and has already been applied to the study of a few bacterial communities. We propose the application of DHPLC to the study of fungal colonization on paper-based archive materials. This technology allows for the identification of each component of a mixture of fungi based on their genetic variation. In a highly complex mixture of microbial DNA this method can be used simply to study the population dynamics, and it also allows for sample fraction collection, which can, in many cases, be immediately sequenced, circumventing the need for cloning. Some examples of the methodological application are shown. Also applied is fragment length analysis for the study of mixed Candida samples. Both of these methods can later be applied in various fields, such as clinical and sand sample analysis. So far, the environmental analyses have been extremely useful to determine potentially pathogenic/toxinogenic fungi such as Stachybotrys sp., Aspergillus niger, Aspergillus fumigatus, and Fusarium sp. This work will hopefully lead to more accurate evaluation of environmental conditions for both human health and the preservation of documents.
Resumo:
The general transcription factor TFIIB, encoded by SUA7 in Saccharomyces cerevisiae, is required for transcription activation but apparently of a specific subset of genes, for example, linked with mitochondrial activity and hence with oxidative environments. Therefore, studying SUA7/TFIIB as a potential target of oxidative stress is fundamental. We found that controlled SUA7 expression under oxidative conditions occurs at transcriptional and mRNA stability levels. Both regulatory events are associated with the transcription activator Yap1 in distinct ways: Yap1 affects SUA7 transcription up regulation in exponentially growing cells facing oxidative signals; the absence of this activator per se contributes to increase SUA7 mRNA stability. However, unlike SUA7 mRNA, TFIIB abundance is not altered on oxidative signals. The biological impact of this preferential regulation of SUA7 mRNA pool is revealed by the partial suppression of cellular oxidative sensitivity by SUA7 overexpression, and supported by the insights on the existence of a novel RNA-binding factor, acting as an oxidative sensor, which regulates mRNA stability. Taken together the results point out a primarily cellular commitment to guarantee SUA7 mRNA levels under oxidative environments.
Resumo:
YAP4, a member of the yeast activator protein (YAP) gene family, is induced in response to osmotic shock in the yeast Saccharomyces cerevisiae. The null mutant displays mild and moderate growth sensitivity at 0.4 M and 0.8 M NaCl respectively, a fact that led us to analyse YAP4 mRNA levels in the hog1 (high osmolarity glycerol) mutant. The data obtained show a complete abolition of YAP4 gene expression in this mutant, placing YAP4 under the HOG response pathway. YAP4 overexpression not only suppresses the osmosensitivity phenotype of the yap4 mutant but also relieves that of the hog1 mutant. Induction, under the conditions tested so far, requires the presence of the transcription factor Msn2p, but not of Msn4p, as YAP4 mRNA levels are depleted by at least 75% in the msn2 mutant. This result was further substantiated by the fact that full YAP4 induction requires the two more proximal stress response elements. Furthermore we find that GCY1, encoding a putative glycerol dehydrogenase, GPP2, encoding a NAD-dependent glycerol-3-phosphate phosphatase, and DCS2, a homologue to a decapping enzyme, have decreased mRNA levels in the yap4 -deleted strain. Our data point to a possible, as yet not entirely understood, role of the YAP4 in osmotic stress response.
Resumo:
Water covers over 70% of the Earth's surface, and is vital for all known forms of life. But only 3% of the Earth's water is fresh water, and less than 0.3% of all freshwater is in rivers, lakes, reservoirs and the atmosphere. However, rivers and lakes are an important part of fresh surface water, amounting to about 89%. In this Master Thesis dissertation, the focus is on three types of water bodies – rivers, lakes and reservoirs, and their water quality issues in Asian countries. The surface water quality in a region is largely determined both by the natural processes such as climate or geographic conditions, and the anthropogenic influences such as industrial and agricultural activities or land use conversion. The quality of the water can be affected by pollutants discharge from a specific point through a sewer pipe and also by extensive drainage from agriculture/urban areas and within basin. Hence, water pollutant sources can be divided into two categories: Point source pollution and Non-point source (NPS) pollution. Seasonal variations in precipitation and surface run-off have a strong effect on river discharge and the concentration of pollutants in water bodies. For example, in the rainy season, heavy and persistent rain wash off the ground, the runoff flow increases and may contain various kinds of pollutants and, eventually, enters the water bodies. In some cases, especially in confined water bodies, the quality may be positive related with rainfall in the wet season, because this confined type of fresh water systems allows high dilution of pollutants, decreasing their possible impacts. During the dry season, the quality of water is largely related to industrialization and urbanization pollution. The aim of this study is to identify the most common water quality problems in Asian countries and to enumerate and analyze the methodologies used for assessment of water quality conditions of both rivers and confined water bodies (lakes and reservoirs). Based on the evaluation of a sample of 57 papers, dated between 2000 and 2012, it was found that over the past decade, the water quality of rivers, lakes, and reservoirs in developing countries is being degraded. Water pollution and destruction of aquatic ecosystems have caused massive damage to the functions and integrity of water resources. The most widespread NPS in Asian countries and those which have the greatest spatial impacts are urban runoff and agriculture. Locally, mine waste runoff and rice paddy are serious NPS problems. The most relevant point pollution sources are the effluents from factories, sewage treatment plant, and public or household facilities. It was found that the most used methodology was unquestionably the monitoring activity, used in 49 of analyzed studies, accounting for 86%. Sometimes, data from historical databases were used as well. It can be seen that taking samples from the water body and then carry on laboratory work (chemical analyses) is important because it can give an understanding of the water quality. 6 papers (11%) used a method that combined monitoring data and modeling. 6 papers (11%) just applied a model to estimate the quality of water. Modeling is a useful resource when there is limited budget since some models are of free download and use. In particular, several of used models come from the U.S.A, but they have their own purposes and features, meaning that a careful application of the models to other countries and a critical discussion of the results are crucial. 5 papers (9%) focus on a method combining monitoring data and statistical analysis. When there is a huge data matrix, the researchers need an efficient way of interpretation of the information which is provided by statistics. 3 papers (5%) used a method combining monitoring data, statistical analysis and modeling. These different methods are all valuable to evaluate the water quality. It was also found that the evaluation of water quality was made as well by using other types of sampling different than water itself, and they also provide useful information to understand the condition of the water body. These additional monitoring activities are: Air sampling, sediment sampling, phytoplankton sampling and aquatic animal tissues sampling. Despite considerable progress in developing and applying control regulations to point and NPS pollution, the pollution status of rivers, lakes, and reservoirs in Asian countries is not improving. In fact, this reflects the slow pace of investment in new infrastructure for pollution control and growing population pressures. Water laws or regulations and public involvement in enforcement can play a constructive and indispensable role in environmental protection. In the near future, in order to protect water from further contamination, rapid action is highly needed to control the various kinds of effluents in one region. Environmental remediation and treatment of industrial effluent and municipal wastewaters is essential. It is also important to prevent the direct input of agricultural and mine site runoff. Finally, stricter environmental regulation for water quality is required to support protection and management strategies. It would have been possible to get further information based in the 57 sample of papers. For instance, it would have been interesting to compare the level of concentrations of some pollutants in the diferente Asian countries. However the limit of three months duration for this study prevented further work to take place. In spite of this, the study objectives were achieved: the work provided an overview of the most relevant water quality problems in rivers, lakes and reservoirs in Asian countries, and also listed and analyzed the most common methodologies.
Resumo:
A 5-unit polyubiquitin gene, TTU3, was isolated from a T. thermophila genomic library and sequenced. This gene presents an extra triplet coding for Phe, a AGAGA motif and a putative HSE element in its 5'-non-coding region. The ubiquitin gene expression in this ciliate was investigated by Northern blot hybridization in conjugating cells or cells under stress conditions. Exponentially growing cells express two ubiquitin mRNAs of 0.75 and 1.8 kb and a new species of 1.4 kb is induced under hyperthermic stress. During sexual reproduction of the cells (conjugation) the 1.8-kb mRNA is still transcribed whereas the steady-state population of the 0.75 mRNA transcripts is strongly diminished. Southern blot analysis suggests that ubiquitin in T. thermophila constitutes a large family of about ten members.