936 resultados para rna
Resumo:
Murine sarcoma viruses constitute a class of replication-defective retroviruses. Cellular transformation may be induced by these viruses in vitro; whereas, fibrosarcomas may result in animals infected with them in vivo (Tooze, 1973; Bishop, 1978). Hybridization studies suggest that murine sarcoma viruses arose by recombination between nondefective murine leukemia virus sequences and certain cellular sequences present in uninfected mouse cells (Hu et al., 1977). A specific gene product, however, has not been implicated in murine sarcoma virus transformation.^ One line of murine sarcoma virus-producing cells, Mo-MuSV-clone 124, (Ball et al., 1973), was studied biochemically because it mainly produces the sarcoma virus as a pseudotype packaged with helper murine leukemia virus proteins. The sarcoma viral RNA was translated in a sophisticated cell-free protein synthesizing system (Murphy and Arlinghaus, 1978). The translation products were analyzed by a number of techniques, including electrophoresis in denaturing gels of SDS polyacrylamide, immunoprecipitation, and peptide mapping. The major products of the total RNA purified from the virus preparation were shown to have molecular weights of about 63,000 (P63('gag)), 42,000 (P42), 40,000 (P40), 38,000 (P38), and 23,000 (P23). The size class of mRNA coding for each of the cell-free products was estimated using a poly(A) selection technique and sucrose gradient fractionation. These analyses were used to localize the coding information related to each of the in vitro synthesized cell-free products within the sarcoma virus genome.^ The major findings of these studies were: (1) the 5' half of the sarcoma viral RNA codes for the 63,000 dalton polypeptide and 42,000 - 38,000 dalton polypeptides derived from the "gag" gene; and (2) the 3' half of the sarcoma viral RNA codes for a 38,000 dalton polypeptide and possibly derived from the cellular acquired sequences. ^
Resumo:
UPF1, an RNA helicase and a core factor of nonsense-mediated mRNA decay (NMD), interacts with RNA independently of the sequence context. To investigate the influence of translation on the association of UPF1 with specific reporter transcripts, UPF1 RNA immunoprecipitations (RIPs) are performed from Hela cells that either express a normally translated immunoglobulin-µ (Ig-µ) reporter (mini µ) or a version with a stable stem loop in the 5' UTR (SL mini µ) that efficiently inhibit translation initiation (Zund et al., 2013). Both the cloning of the SL mini µ reporter construct and the UPF1 RIP experiment are described in detail.
Resumo:
The structural and functional repertoire of small non-protein-coding RNAs (ncRNAs) is central for establishing gene regulation networks in cells and organisms. Here, we show that an mRNA-derived 18-nucleotide-long ncRNA is capable of downregulating translation in Saccharomyces cerevisiae by targeting the ribosome. This 18-mer ncRNA binds to polysomes upon salt stress and is crucial for efficient growth under hyperosmotic conditions. Although the 18-mer RNA originates from the TRM10 locus, which encodes a tRNA methyltransferase, genetic analyses revealed the 18-mer RNA nucleotide sequence, rather than the mRNA-encoded enzyme, as the translation regulator. Our data reveal the ribosome as a target for a small regulatory ncRNA and demonstrate the existence of a yet unkown mechanism of translation regulation. Ribosome-targeted small ncRNAs are found in all domains of life and represent a prevalent but so far largely unexplored class of regulatory molecules.
Resumo:
Human up-frameshift 1 (UPF1) is an ATP-dependent RNA helicase and phosphoprotein implicated in several biological processes but is best known for its key function in nonsense-mediated mRNA decay (NMD). Here we employed a combination of stable isotope labeling of amino acids in cell culture experiments to determine by quantitative proteomics UPF1 interactors. We used this approach to distinguish between RNA-mediated and protein-mediated UPF1 interactors and to determine proteins that preferentially bind the hypo- or the hyper-phosphorylated form of UPF1. Confirming and expanding previous studies, we identified the eukaryotic initiation factor 3 (eIF3) as a prominent protein-mediated interactor of UPF1. However, unlike previously reported, eIF3 binds to UPF1 independently of UPF1’s phosphorylation state. Furthermore, our data revealed many nucleus-associated RNA-binding proteins that preferentially associate with hyper-phosphorylated UPF1 in an RNase-sensitive manner, suggesting that UPF1 gets recruited to mRNA and becomes phosphorylated before being exported to the cytoplasm as part of the mRNP.
Resumo:
The 3' cleavage generating non-polyadenylated animal histone mRNAs depends on the base pairing between U7 snRNA and a conserved histone pre-mRNA downstream element. This interaction is enhanced by a 100 kDa zinc finger protein (ZFP100) that forms a bridge between an RNA hairpin element upstream of the processing site and the U7 small nuclear ribonucleoprotein (snRNP). The N-terminus of Lsm11, a U7-specific Sm-like protein, was shown to be crucial for histone RNA processing and to bind ZFP100. By further analysing these two functions of Lsm11, we find that Lsm11 and ZFP100 can undergo two interactions, i.e. between the Lsm11 N-terminus and the zinc finger repeats of ZFP100, and between the N-terminus of ZFP100 and the Sm domain of Lsm11, respectively. Both interactions are not specific for the two proteins in vitro, but the second interaction is sufficient for a specific recognition of the U7 snRNP by ZFP100 in cell extracts. Furthermore, clustered point mutations in three phylogenetically conserved regions of the Lsm11 N-terminus impair or abolish histone RNA processing. As these mutations have no effect on the two interactions with ZFP100, these protein regions must play other roles in histone RNA processing, e.g. by contacting the pre-mRNA or additional processing factors.
Resumo:
Oxidatively damaged RNA has recently gathered more attention and has been closely related to different neurodegenerative diseases. The principles of oxidative stress and its influence on nucleic acids are reported. In contrast to DNA oxidative lesions of RNA have been scarcely described in the literature so far. These known stable RNA base modifications which arise under oxidative stress are reviewed here with regard to their biophysical properties and their potential mutagenicity. Furthermore the possible mechanisms of how cells deal with oxidized RNA are discussed. Posttranscriptional RNA modifications and the oxidation of RNA as an early event in several neurodegenerative diseases are not in the scope of this review.
Resumo:
Introduction of a hydrophobic biphenyl-C-nucleotide pair into a 11-mer RNA duplex is associated with a net penalty in the free energy of duplex formation of 2.0 kcal mol(-1) or 10 degrees C in T(m), relative to DNA. These differential stabilities are of relevance with respect to the transcriptional and translational aspects of hydrophobic base-pairs
Resumo:
This minireview highlights three aspects of our recent work in the area of sugar modified oligonucleotide analogues. It provides an overview over recent results on the conformationally constrained analogue tricyclo-DNA with special emphasis of its antisense properties, it summarizes results on triple-helix forming oligodeoxynucleotides containing pyrrolidino-nucleosides with respect to DNA recognition via the dual recognition mode, and it highlights the advantageous application of the orthogonal oligonucleotidic pairing system homo-DNA in molecular beacons for DNA diagnostics
Resumo:
Recently several novel and previously reported non-protein-coding RNAs (ncRNAs) have been identified to be upregulated upon Epstein-Barr virus (EBV) infection in human B-lymphocytes. A group of these significantly upregulated ncRNAs are called vault RNAs (vtRNAs). ,b Only about 5% of the total cellular vtRNAs are connected to the vault particle, the largest known ribonucleoprotein particle (RNP) in eukaryotic cells. However the function of this ncRNA family and moreover of the vault particle remains still rather unclear. Our previous findings suggest a link between EBV infection and vtRNA expression. Consequently we are interested which part of the viral genome is responsible for the upregulation and moreover which function the vtRNAs might possess during virus propagation. To address this question we have separately overexpressed specific EBV-encoded, latently expressed proteins in BL2-cells to determine the influence on the vault RNA levels. Thereby we identified one EBV-encoded protein, called Latent Membrane Protein 1 (LMP1), which significantly contributes to the vtRNA upregulation. We used LMP1 mutants to characterize the region of the protein and the responsible pathway for triggering the elevated vtRNA expression. Our results suggest that the NFkB- pathway might be involved in this process. To investigate a possible functional connection between the vtRNA and EBV infection, we have overexpressed vtRNA1-1 in BL41, a cell line usually not expressing this vault RNA. We show that overexpression of vtRNA1-1 leads to a better viral establishment and markedly protects cells from undergoing apoptosis. Knock-down of the major vault protein, the main component of the vault particle, had no effect on EBV infection and apoptosis resistance. Thus these results support the view that the observed phenotype is caused by the vtRNA rather than the vault particle.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed RNA-binding protein of the hnRNP family, that has been discovered as fused to transcription factors, through chromosomal translocations, in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis (ALS) [1]. To date, FUS/TLS has been implicated in a variety of cellular processes such as gene expression control, transcriptional regulation, pre-mRNA splicing and miRNA processing [2]. In addition, some evidences link FUS/TLS to genome stability control and DNA damage response. In fact, mice lacking FUS/TLS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and in response to double-strand breaks, FUS/TLS gets phosphorylated by the protein kinase ATM [3,4,5]. Furthermore, the inducible depletion of FUS/TLS in a neuroblastoma cell line (SH-SY5Y FUS/TLS TET-off iKD) subjected to genotoxic stress (IR) resulted in an increased phosphorylation of γH2AX respect to control cells, suggesting an higher activation of the DNA damage response. The study aims to investigate the specific role of FUS/TLS in DNA damage response through the characterization of the proteomic profile of SH-SY5Y FUS/TLS iKD cells subjected to DNA damage stress, by mass spectrometry-based quantitative proteomics (e.g. SILAC). Preliminary results of mass spectrometric identification of FUS/TLS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS/TLS protein, highlighted the interactions with several proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS/TLS is involved in this pathway, even thou its exact role still need to be addressed.
Resumo:
Two genes with related functions in RNA biogenesis were recently reported in patients with familial ALS: the FUS/TLS gene at the ALS6 locus and the TARDBP/TDP-43 gene at the ALS10 locus [1, 2]. FUS has been implicated to function in several steps of gene expression, including transcription regulation [3], RNA splicing [4, 5], mRNA transport in neurons [6] and, interestingly, in microRNA (miRNA) processing [7]. The goal of this project is to identify the molecular mechanisms leading to the development of FUS mutations-associated ALS. Specifically, we want to test the hypothesis that these FUS mutations misregulate miRNA levels that in turn affect the expression of genes critical for motor neuron survival. In addition we want to test whether misregulation of the miRNA profile is a common feature in ALS. We have performed immunoprecipitations from total extracts of 293T cells expressing FLAG-tagged FUS to characterize its interactome by mass spectrometry. This proteomic study not only revealed a strong interaction of FUS with splicing factors, but shows that FUS might be involved in many, quite different pathways. To map which parts of the FUS protein contribute to the interaction with splicing factors, we have performed a set of experiments with a series of missense and deletion mutants. With this approach, we will not only gain information on the binding partners of FUS along with a map of the required domains for the interactions, but it will also help to unravel whether certain ALS-associated FUS mutations lead to a loss or gain of function due to gain or loss of interactors. Additionally, we have performed quantitative interactomics using SILAC to identify interactome differences of ALS-associated FUS mutants. To this end we have performed immunoprecipitations of total extract from 293T cells, stably transduced with constructs expressing wild-type FUS-FLAG as well as three different ALS-associated mutants (G156E, R244C, P525L). First results indicate striking differences in the interactome with certain RNA binding proteins. We are now validating these candidates in order to reveal the importance of these differential interactions in the context of ALS.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed protein of the hnRNP family, that has been discovered as fused to transcription factors in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis [Vance C. et al., 2009]. FUS is a 53 kDa nuclear protein that contains structural domains, such as a RNA Recognition Motif (RRM) and a zinc finger motif, that give to FUS the ability to bind to both RNA and DNA sequences. It has been implicated in a variety of cellular processes, such as pre-mRNA splicing, miRNA processing, gene expression control and transcriptional regulation [Fiesel FC. and Kahle PJ., 2011]. Moreover, some evidences link FUS to genome stability control and DNA damage response: mice lacking FUS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and, in response to double-strand breaks, FUS is phosphorylated by the protein kinase ATM [Kuroda M. et al., 2000; Hicks GG. et al., 2000; Gardiner M. et al., 2008]. Furthermore, preliminary results of mass spectrometric identification of FUS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS protein, highlighted the interactions with proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS is involved in this pathway, even though its role still needs to be clarified. This study aims to investigate the biological roles of FUS in human cells and in particular the putative role in DNA damage response through the characterization of the proteomic profile of the neuroblastoma cell line SH-SY5Y upon FUS inducible depletion, by a quantitative proteomic approach. The SH-SY5Y cell line that will be used in this study expresses, in presence of tetracycline, a shRNA that targets FUS mRNA, leading to FUS protein depletion (SH-SY5Y FUS iKD cells). To quantify changes in proteins expression levels a SILAC strategy (Stable Isotope Labeling by Amino acids in Cell culture) will be conducted on SH-SY5Y FUS iKD cells and a control SH-SY5Y cell line (that expresses a mock shRNA) and the relative changes in proteins levels will be evaluated after five and seven days upon FUS depletion, by nanoliquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS) and bioinformatics analysis. Preliminary experiments demonstrated that the SH-SY5Y FUS iKD cells, when subjected to genotoxic stress (high dose of IR), upon inducible depletion of FUS, showed a increased phosphorylation of gH2AX with respect to control cells, suggesting an higher activation of the DNA damage response.
Resumo:
In addition to classically defined immune mechanisms, cell-intrinsic processes can restrict virus infection and have shaped virus evolution. The details of this virus-host interaction are still emerging. Following a genome-wide siRNA screen for host factors affecting replication of Semliki Forest virus (SFV), a positive-strand RNA (+RNA) virus, we found that depletion of nonsense-mediated mRNA decay (NMD) pathway components Upf1, Smg5, and Smg7 led to increased levels of viral proteins and RNA and higher titers of released virus. The inhibitory effect of NMD was stronger when virus replication efficiency was impaired by mutations or deletions in the replicase proteins. Consequently, depletion of NMD components resulted in a more than 20-fold increase in production of these attenuated viruses. These findings indicate that a cellular mRNA quality control mechanism serves as an intrinsic barrier to the translation of early viral proteins and the amplification of +RNA viruses in animal cells.