946 resultados para mercaptan removal
Resumo:
The performance of a sulfide-removal system based on biofilms dominated by green sulfur bacteria (GSB) has been investigated. The system was supplied with radiant energy in the band 720-780 nm, and fed with a synthetic wastewater. The areal net sulfide removal rate and the efficacy of the incident radiant energy for sulfide removal have been characterized over ranges of bulk sulfide concentration (1.6-11.5 mg L-1) and incident irradiance (0.21-1.51 W m(-2)). The areal net sulfide removal rate increased monotonically with both increasing incident irradiance and increasing bulk sulfide concentration. The efficacy of the radiant energy for sulfide removal (the amount of sulfide removed per unit radiant energy supplied) also increased monotonically with rising bulk sulfide concentration, but exhibited a maximum value with respect to incident irradiance. The maximum observed values of this net removal rate and this efficacy were, respectively, 2.08 g m(-2) d(-1) and 2.04 g W-1 d(-1). In-band changes in the spectral composition of the radiant energy affected this efficacy only slightly. The products of sulfide removal were sulfate and elemental-S. The elemental-S was scarcely released into the liquid, however, and reasons for this, such as sulfur reduction and polysulfide formation, are considered. Between 1.45 and 3.85 photons were needed for the net removal of one electron from S-species. Intact samples of the biofilm were characterized by microscopy, and their thicknesses lay between 39 +/- 9 and 429 +/- 57 mum. The use of the experimentally determined rates and efficacies for the design of a pilot-scale system is illustrated. (C) 2004 Wiley Periodicals, Inc.
Resumo:
The effect of retrofitting an existing pond on removal efficiency and hydraulic performance was modelled using the commercial software Mike21 and compartmental modelling. The Mike21 model had previously been calibrated on the studied pond. Installation of baffles, the addition of culverts under a causeway and removal of an existing island were all studied as possible improvement measures in the pond. The subsequent effect on hydraulic performance and removal of. suspended solids was then evaluated. Copper, cadmium, BOD, nitrogen and phosphorus removal were,also investigated for that specific improvement measure showing the best results. Outcomes of this study reveal that all measures increase the removal efficiency of suspended solids. The hydraulic efficiency is improved for all cases, except for the case where the island is removed. Compartmental modelling was also used to evaluate hydraulic performance and facilitated a better understanding of the way each of the different measures affected the flow pattern and performance. It was concluded that the installation of baffles is the best of the studied measures resulting in a reduction in the annual load on the receiving lake by approximately 8,000 kg of suspended solids (25% reduction of the annual load), 2 kg of copper (10% reduction of the annual load) and 600 kg of BOD (10% reduction of the annual load).
Resumo:
Lines of transgenic tobacco have been generated that are transformed with either the wild-type peanut peroxidase prxPNC2 cDNA, driven by the CaMV3 5S promoter (designated 35S::prxPNC2-WT) or a mutated PNC2 cDNA in which the asparagine residue (Asn(189)) associated with the point of glycan attachment (Asn(189)) has been replaced with alanine (designated 35S::prxPNC2-M). PCR, using genomic DNA as template, has confirmed the integration of the 35S::prxPNC2-WT and 35::prxPNC2-M constructs into the tobacco genome, and western analysis using anti-PNC2 antibodies has revealed that the prxPNC2-WT protein product (PNC2-WT) accumulates with a molecular mass of 34,670 Da, while the prxPNC2-M protein product (PNC2-M) accumulates with a molecular mass of 32,600 Da. Activity assays have shown that both PNC2-WT and PNC2-M proteins accumulate preferentially in the ionically-bound cell wall fraction, with a significantly higher relative accumulation of the PNC2-WT isoenzyme in the ionically-bound fraction when compared with the PNC2-M isoform. Kinetic analysis of the partially purified PNC2-WT isozyme revealed an affinity constant (apparent K-m) of 11.2 mM for the reductor substrate guaiacol and 1.29 mM for H2O2, while values of 11.9 mM and 1.12 mM were determined for the PNC2-M isozyme. A higher Arrenhius activation energy (E,,) was determined for the PNC2-M isozyme (22.9 kJ mol(-1)), when compared with the PNC2-WT isozyme (17.6 kJ mol(-1)), and enzyme assays have determined that the absence of the glycan influences the thermostability of the PNC2-M isozyme. These results are discussed with respect to the proposed roles of N-linked glycans attached to plant peroxidases. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The effects of acetate and propionate on the performance of a recently proposed and characterized photosynthetic biological sulfide removal system have been investigated with a view to predicting this concept's suitability for removing sulfide from wastewater undergoing or having undergone anaerobic treatment. The concept relies on substratum-irradiated biofilms dominated by green sulfur bacteria (GSB), which are supplied with radiant energy in the band 720 - 780 nm. A model reactor was fed for 7 months with a synthetic wastewater free of volatile fatty acids (VFAs), after which time intermittent dosing of the wastewater with acetate or propionate was begun. Such dosing suppressed the areal net sulfide removal rate by similar to50%, and caused the principal net product of sulfide removal to switch from sulfate to elemental-S. Similarly suppressed values of this rate were observed when the wastewater was dosed continuously with acetate, and this rate was not significantly affected by changes in the concentration of ammonia-N in the feed. The main net product of sulfide removal was again elemental-S, which was scarcely released into the liquid, however. Sulfate reduction and sulfur reduction were observed when the light supply was interrupted and were inferred to be occurring within the irradiated biofilm. A preexisting conceptual model of the biofilm was augmented with both of these reductive processes, and this augmented model was shown to account for most of the observed effects of VFA dosing. The implications of these findings for the practicality of the technology are considered. (C) 2004 Wiley Periodicals, Inc.
Resumo:
The microbial community composition and activity was investigated in aggregates from a lab-scale bioreactor, in which nitrification, denitrification and phosphorus removal occurred simultaneously. The biomass was highly enriched for polyphosphate accumulating organisms facilitating complete removal of phosphorus from the bulk liquid; however, some inorganic nitrogen still remained at the end of the reactor cycle. This was ascribed to incomplete coupling of nitrification and denitrification causing NO3- accumulation. After 2 h of aeration, denitrification was dependent on the activity of nitrifying bacteria facilitating the formation of anoxic zones in the aggregates; hence, denitrification could not occur without simultaneous nitrification towards the end of the reactor cycle. Nitrous oxide was identified as a product of denitrification, when based on stored PHA as carbon source. This observation is of critical importance to the outlook of applying PHA-driven denitrification in activated sludge processes. (c) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Propionate, a carbon substrate abundant in many prefermenters, has been shown in several previous studies to be a more favorable substrate than acetate for enhanced biological phosphorus removal (EBPR). The anaerobic metabolism of propionate by polyphosphate accumulating organisms (PAOs) is studied in this paper. A metabolic model is proposed to characterize the anaerobic biochemical transformations of propionate uptake by PAOs. The model is demonstrated to predict very well the experimental data from a PAO culture enriched in a laboratory-scale reactor with propionate as the sole carbon source. Quantitative fluorescence in-situ hybridization (FISH) analysis shows that Candidatus Accumulibacter phosphatis, the only identified PAO to date, constitute 63% of the bacterial population in this culture. Unlike the anaerobic metabolism of acetate by PAOs, which induces mainly poly-beta-hydroxybutyrate (PHB) production, the major fractions of poly-beta-hydroxyalkanoate (PHA) produced with propionate as the carbon source are poly-beta-hydroxyvalerate (PHV) and poly-beta-hydroxy-2-methylvalerate (PH2MV). PHA formation correlates very well with a selective (or nonrandom) condensation of acetyl-CoA and propionyl-CoA molecules. The maximum specific propionate uptake rate by PAOs found in this study is 0.18 C-mol/C-mol-biomass h, which is very similar to the maximum specific acetate uptake rate reported in literature. The energy required for transporting 1 carbon-mole of propionate across the PAO cell membrane is also determined to be similar to the transportation of 1 carbon-mole of acetate. Furthermore, the experimental results suggest that PAOs possess a similar preference toward acetate and propionate uptake on a carbon-mole basis. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Poly-beta-hydroxyalkanoate (PHA) is a polymer commonly used in carbon and energy storage for many different bacterial cells. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), store PHA anaerobically through metabolism of carbon substrates such as acetate and propionate. Although poly-beta-hydroxybutyrate (PHB)and poly-beta-hydroxyvalerate (PHV) are commonly quantified using a previously developed gas chromatography (GC) method, poly-beta-hydroxy-2-methyl valerate (PH2MV) is seldom quantified despite the fact that it has been shown to be a key PHA fraction produced when PAOs or GAOs metabolise propionate. This paper presents two GC-based methods modified for extraction and quantification of PHB, PHV and PH2MV from enhanced biological phosphorus removal (EBPR) systems. For the extraction Of PHB and PHV from acetate fed PAO and GAO cultures, a 3% sulfuric acid concentration and a 2-20 h digestion time is recommended, while a 10% sulfuric acid solution digested for 20 h is recommended for PHV and PH2MV analysis from propionate fed EBPR systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
During the analytical method development for BAY 11-7082 ((E)-3-[4-methylphenylsulfonyl]-2-propenenitrile), using HPLC-MS-MS and HPLC-UV, we observed that the protein removal process (both ultrafiltration and precipitation method using organic solvents) prior to HPLC brought about a significant reduction in the concentration of this compound. The use of a structurally similar internal standard, BAY 11-7085 ((E)-3-[4-t-butylphenylsulfonyl]-2-propenenitrile), was not effective in compensating for the loss of analyte as the extent of reduction was different to that of the analyte. We present here a systematic investigation of this problem and a new validated method for the determination of BAY 11-7082. (c) 2006 Elsevier B.V. All rights reserved.
Protective Iron Carbonate Films—Part 2: Chemical Removal by Dissolution in Single-Phase Aqueous Flow
Resumo:
Cell deletion is a physiological process for the development and maintenance of tissue homeostasis in metazoa. This is mainly achieved by the induction of various forms of programmed cell death followed by the recognition and removal of the targeted cells by phagocytes. In this review, we will discuss cell deletion in relation to the development and function of the innate immune system, particularly of the mononuclear phagocyte system (MPS), its ontogeny and potential role in tissue remodeling in the embryo and adult. Ongoing studies are addressing the roles of professional phagocytes of the MPS and neighboring tissue cells in dying cell removal, and candidate molecules that might attract mononuclear phagocytes to the dying cells. The potential phagocyte must discriminate between living and dying cells; current concepts for this discrimination derive from the observation of newly exposed ligands on the dying cells and new evidence for direct inhibition of uptake by viable cells.
Resumo:
Enhanced biological phosphorus removal (EBPR) has been used at many wastewater treatment plants all over the world for many years. In this study a full-scale sludge with good EBPR was tested with P-release batch tests and combined FISH/MAR (fluorescence in situ hybridisation and microautoradiography). Proposed models of PAOs and GAOs (polyphosphate- and glycogen-accumulating organisms) and microbial methods suggested from studies of laboratory reactors were found to be applicable also on sludge from full-scale plants. Dependency of pH and the uptake of both acetate and propionate were studied and used for calculations for verifying the models and results from microbial methods. All rates found from the batch tests with acetate were higher than in the batch tests with propionate, which was explained by the finding that only those parts of the bacterial community that were able to take up acetate anaerobically were able to take up propionate anaerobically.
Resumo:
An Australian natural zeolite was collected, characterised and employed for basic dye adsorption in aqueous solution. The natural zeolite is mainly composed of clinoptiloite, quartz and mordenite and has cation-exchange capacity of 120 meq/100 g. The natural zeolite presents higher adsorption capacity for methylene blue than rhodamine B with the maximal adsorption capacity of 2.8 x 10(-5) and 7.9 x 10(-5) Mot/g at 50 degrees C for rhodamine B and methylene blue, respectively. Kinetic studies indicated that the adsorption followed the pseudo second-order kinetics and could be described as two-stage diffusion process. The adsorption isotherm could be fitted by the Langmuir and Freundlich models. Thermodynamic calculations showed that the adsorption is endothermic process with Delta H degrees at 2.0 and 8.7 kJ/mol for rhodamine B and methylene blue. It has also found that the regenerated zeolites by high-temperature calcination and Fenton oxidation showed similar adsorption capacity but lower than the fresh sample. Only 60% capacity could be recovered by the two regeneration techniques. (c) 2006 Elsevier B.V. All rights reserved.