933 resultados para knowledge production performance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

21th Annual Conference of the International Group for Lean Construction (IGLC 21), July 2013, Fortaleza, Brazil

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation presented to confer Master Degree in Chemical and Biochemical Engineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation for the Degree of Master in Biotechnology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Eletrotécnica e de Computadores

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid knowledge bases are knowledge bases that combine ontologies with non-monotonic rules, allowing to join the best of both open world ontologies and close world rules. Ontologies shape a good mechanism to share knowledge on theWeb that can be understood by both humans and machines, on the other hand rules can be used, e.g., to encode legal laws or to do a mapping between sources of information. Taking into account the dynamics present today on the Web, it is important for these hybrid knowledge bases to capture all these dynamics and thus adapt themselves. To achieve that, it is necessary to create mechanisms capable of monitoring the information flow present on theWeb. Up to today, there are no such mechanisms that allow for monitoring events and performing modifications of hybrid knowledge bases autonomously. The goal of this thesis is then to create a system that combine these hybrid knowledge bases with reactive rules, aiming to monitor events and perform actions over a knowledge base. To achieve this goal, a reactive system for the SemanticWeb is be developed in a logic-programming based approach accompanied with a language for heterogeneous rule base evolution having as its basis RIF Production Rule Dialect, which is a standard for exchanging rules over theWeb.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aims to identify and rank a set of Lean and Green practices and supply chain performance measures on which managers should focus to achieve competitiveness and improve the performance of automotive supply chains. The identification of the contextual relationships among the suggested practices and measures, was performed through literature review. Their ranking was done by interviews with professionals from the automotive industry and academics with wide knowledge on the subject. The methodology of interpretive structural modelling (ISM) is a useful methodology to identify inter relationships among Lean and Green practices and supply chain performance measures and to support the evaluation of automotive supply chain performance. Using the ISM methodology, the variables under study were clustered according to their driving power and dependence power. The ISM methodology was proposed to be used in this work. The model intends to provide a better understanding of the variables that have more influence (driving variables), the others and those which are most influenced (dependent variables) by others. The information provided by this model is strategic for managers who can use it to identify which variables they should focus on in order to have competitive supply chains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enhanced biological phosphorus removal (EBPR) is the most economic and sustainable option used in wastewater treatment plants (WWTPs) for phosphorus removal. In this process it is important to control the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), since EBPR deterioration or failure can be related with the proliferation of GAOs over PAOs. This thesis is focused on the effect of operational conditions (volatile fatty acid (VFA) composition, dissolved oxygen (DO) concentration and organic carbon loading) on PAO and GAO metabolism. The knowledge about the effect of these operational conditions on EBPR metabolism is very important, since they represent key factors that impact WWTPs performance and sustainability. Substrate competition between the anaerobic uptake of acetate and propionate (the main VFAs present in WWTPs) was shown in this work to be a relevant factor affecting PAO metabolism, and a metabolic model was developed that successfully describes this effect. Interestingly, the aerobic metabolism of PAOs was not affected by different VFA compositions, since the aerobic kinetic parameters for phosphorus uptake, polyhydroxyalkanoates (PHAs) degradation and glycogen production were relatively independent of acetate or propionate concentration. This is very relevant for WWTPs, since it will simplify the calibration procedure for metabolic models, facilitating their use for full-scale systems. The DO concentration and aerobic hydraulic retention time (HRT) affected the PAO-GAO competition, where low DO levels or lower aerobic HRT was more favourable for PAOs than GAOs. Indeed, the oxygen affinity coefficient was significantly higher for GAOs than PAOs, showing that PAOs were far superior at scavenging for the often limited oxygen levels in WWTPs. The operation of WWTPs with low aeration is of high importance for full-scale systems, since it decreases the energetic costs and can potentially improve WWTP sustainability. Extended periods of low organic carbon load, which are the most common conditions that exist in full-scale WWTPs, also had an impact on PAO and GAO activity. GAOs exhibited a substantially higher biomass decay rate as compared to PAOs under these conditions, which revealed a higher survival capacity for PAOs, representing an advantage for PAOs in EBPR processes. This superior survival capacity of PAOs under conditions more closely resembling a full-scale environment was linked with their ability to maintain a residual level of PHA reserves for longer than GAOs, providing them with an effective energy source for aerobic maintenance processes. Overall, this work shows that each of these key operational conditions play an important role in the PAO-GAO competition and should be considered in WWTP models in order to improve EBPR processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to global warming and shrinking fossil fuel resources, politics as well as society urge for a reduction of green house gas (GHG) emissions. This leads to a re-orientation towards a renewable energy sector. In this context, innovation and new technologies are key success factors. Moreover, the renewable energy sector has entered a consolidation stage, where corporate investors and mergers and acquisitions (M&A) gain in importance. Although both M&A and innovation in the renewable energy sector are important corporate strategies, the link between those two aspects has not been examined before. The present thesis examines the research question how M&A influence the acquirer’s post-merger innovative performance in the renewable energy sector. Based on a framework of relevant literature, three hypotheses are defined. First, the relation between non-technology oriented M&A and post-merger innovative performance is discussed. Second, the impact of absolute acquired knowledge on postmerger innovativeness is examined. Third, the target-acquirer relatedness is discussed. A panel data set of 117 firms collected over a period of six years has been analyzed via a random effects negative binomial regression model and a time lag of one year. The results support a non-significant, negative impact of non-technology M&A on postmerger innovative performance. The applied model did not support a positive and significant impact of absolute acquired knowledge on post-merger innovative performance. Lastly, the results suggest a reverse relation than postulated by Hypothesis 3. Targets from the same industry significantly and negatively influence the acquirers’ innovativeness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHA) production using mixed microbial cultures (MMC) requires a multi-stage process involving the microbial selection of PHA-storing microorganisms, typically operated in sequencing batch reactors (SBR), and an accumulation reactor. Since low-cost renewable feedstocks used as process feedstock are often nitrogen-deficient, nutrient supply in the selection stage is required to allow for microbial growth. In this context, the possibility to uncouple nitrogen supply from carbon feeding within the SBR cycle has been investigated in this study. Moreover, three different COD:N ratios (100:3.79, 100:3.03 and 100:2.43) were tested in three different runs which also allowed the study of COD:N ratio on the SBR performance. For each run, a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5 gCOD L-1 d-1 was used as carbon feedstock, whereas ammonium sulfate was the nitrogen source in a lab-scale sequence batch reactor (SBR) with 1 L of working volume. Besides, a sludge retention time (SRT) of 1 d was used as well as a 6 h cycle length. The uncoupled feeding strategy significantly enhanced the selective pressure towards PHA-storing microorganisms, resulting in a two-fold increase in the PHA production (up to about 1.3 gCOD L-1). A high storage response was observed for the two runs with the COD:N ratios (gCOD:gN) of 100:3.79 and 100:3.03, whereas the lowest investigated nitrogen load resulted in very poor performance in terms of polymer production. In fact, strong nitrogen limitation caused fungi to grow and a very poor storage ability by microorganisms that thrived in those conditions. The COD:N ratio also affected the polymer composition, indeed the produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) showed a variable HV content (1-20 %, w/w) among the three runs, lessening as the COD:N increased. This clearly suggests the possibility to use the COD:N ratio as a tool for tuning polymer properties regardless the composition of the feedstock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Madine Darby Canine Kidney (MDCK) cell lines have been extensively evaluated for their potential as host cells for influenza vaccine production. Recent studies allowed the cultivation of these cells in a fully defined medium and in suspension. However, reaching high cell densities in animal cell cultures still remains a challenge. To address this shortcoming, a combined methodology allied with knowledge from systems biology was reported to study the impact of the cell environment on the flux distribution. An optimization of the medium composition was proposed for both a batch and a continuous system in order to reach higher cell densities. To obtain insight into the metabolic activity of these cells, a detailed metabolic model previously developed by Wahl A. et. al was used. The experimental data of four cultivations of MDCK suspension cells, grown under different conditions and used in this work came from the Max Planck Institute, Magdeburg, Germany. Classical metabolic flux analysis (MFA) was used to estimate the intracellular flux distribution of each cultivation and then combined with partial least squares (PLS) method to establish a link between the estimated metabolic state and the cell environment. The validation of the MFA model was made and its consistency checked. The resulted PLS model explained almost 70% of the variance present in the flux distribution. The medium optimization for the continuous system and for the batch system resulted in higher biomass growth rates than the ones obtained experimentally, 0.034 h-1 and 0.030 h-1, respectively, thus reducing in almost 10 hours the duplication time. Additionally, the optimal medium obtained for the continuous system almost did not consider pyruvate. Overall the proposed methodology seems to be effective and both proposed medium optimizations seem to be promising to reach high cell densities.