881 resultados para dynamic environment
Resumo:
Background/Rationale Guided by the need-driven dementia-compromised behavior (NDB) model, this study examined influences of the physical environment on wandering behavior. Methods Using a descriptive, cross-sectional design, 122 wanderers from 28 long-term care (LTC) facilities were videotaped 10 to 12 times; data on wandering, light, sound, temperature and humidity levels, location, ambiance, and crowding were obtained. Associations between environmental variables and wandering were evaluated with chi-square and t tests; the model was evaluated using logistic regression. Results In all, 80% of wandering occurred in the resident’s own room, dayrooms, hallways, or dining rooms. When observed in other residents’ rooms, hallways, shower/baths, or off-unit locations, wanderers were likely (60%-92% of observations) to wander. The data were a good fit to the model overall (LR [logistic regression] χ2 (5) = 50.38, P < .0001) and by wandering type. Conclusions Location, light, sound, proximity of others, and ambiance are associated with wandering and may serve to inform environmental designs and care practices.
Resumo:
This paper describes Electronic Blocks, a new robot construction element designed to allow children as young as age three to build and program robotic structures. The Electronic Blocks encapsulate input, output and logic concepts in tangible elements that young children can use to create a wide variety of physical agents. The children are able to determine the behavior of these agents by the choice of blocks and the manner in which they are connected. The Electronic Blocks allow children without any knowledge of mechanical design or computer programming to create and control physically embodied robots. They facilitate the development of technological capability by enabling children to design, construct, explore and evaluate dynamic robotics systems. A study of four and five year-old children using the Electronic Blocks has demonstrated that the interface is well suited to young children. The complexity of the implementation is hidden from the children, leaving the children free to autonomously explore the functionality of the blocks. As a consequence, children are free to move their focus beyond the technology. Instead they are free to focus on the construction process, and to work on goals related to the creation of robotic behaviors and interactions. As a resource for robot building, the blocks have proved to be effective in encouraging children to create robot structures, allowing children to design and program robot behaviors.
Resumo:
A software tool (DRONE) has been developed to evaluate road traffic noise in a large area with the consideration of network dynamic traffic flow and the buildings. For more precise estimation of noise in urban network where vehicles are mainly in stop and go running conditions, vehicle sound power level (for acceleration/deceleration cruising and ideal vehicle) is incorporated in DRONE. The calculation performance of DRONE is increased by evaluating the noise in two steps of first estimating the unit noise database and then integrating it with traffic simulation. Details of the process from traffic simulation to contour maps are discussed in the paper and the implementation of DRONE on Tsukuba city is presented
Resumo:
The paper discusses the operating principles and control characteristics of a dynamic voltage restorer (DVR). It is assumed that the source voltages contain interharmonic components in addition to fundamental components. The main aim of the DVR is to produce a set of clean balanced sinusoidal voltages across the load terminals irrespective of unbalance, distortion and voltage sag/swell in the supply voltage. An algorithm has been discussed for extracting fundamental phasor sequence components from the samples of three-phase voltages or current waveforms having integer harmonics and interharmonics. The DVR operation based on extracted components is demonstrated. The switching signal is generated using a deadbeat controller. It has been shown that the DVR is able to compensate these interharmonic components such that the load voltages are perfectly regulated. The DVR operation under deep voltage sag is also discussed. The proposed DVR operation is verified through the computer simulation studies using the MATLAB software package.
Resumo:
A road traffic noise prediction model (ASJ MODEL-1998) has been integrated with a road traffic simulator (AVENUE) to produce the Dynamic areawide Road traffic NoisE simulator-DRONE. This traffic-noise-GIS based integrated tool is upgraded to predict noise levels in built-up areas. The integration of traffic simulation with a noise model provides dynamic access to traffic flow characteristics and hence automated and detailed predictions of traffic noise. The prediction is not only on the spatial scale but also on temporal scale. The linkage with GIS gives a visual representation to noise pollution in the form of dynamic areawide traffic noise contour maps. The application of DRONE on a real world built-up area is also presented.
Resumo:
Conifers are resistant to attack from a large number of potential herbivores or pathogens. Previous molecular and biochemical characterization of selected conifer defence systems support a model of multigenic, constitutive and induced defences that act on invading insects via physical, chemical, biochemical or ecological (multitrophic) mechanisms. However, the genomic foundation of the complex defence and resistance mechanisms of conifers is largely unknown. As part of a genomics strategy to characterize inducible defences and possible resistance mechanisms of conifers against insect herbivory, we developed a cDNA microarray building upon a new spruce (Picea spp.) expressed sequence tag resource. This first-generation spruce cDNA microarray contains 9720 cDNA elements representing c. 5500 unique genes. We used this array to monitor gene expression in Sitka spruce (Picea sitchensis) bark in response to herbivory by white pine weevils (Pissodes strobi, Curculionidae) or wounding, and in young shoot tips in response to western spruce budworm (Choristoneura occidentalis, Lepidopterae) feeding. Weevils are stem-boring insects that feed on phloem, while budworms are foliage feeding larvae that consume needles and young shoot tips. Both insect species and wounding treatment caused substantial changes of the host plant transcriptome detected in each case by differential gene expression of several thousand array elements at 1 or 2 d after the onset of treatment. Overall, there was considerable overlap among differentially expressed gene sets from these three stress treatments. Functional classification of the induced transcripts revealed genes with roles in general plant defence, octadecanoid and ethylene signalling, transport, secondary metabolism, and transcriptional regulation. Several genes involved in primary metabolic processes such as photosynthesis were down-regulated upon insect feeding or wounding, fitting with the concept of dynamic resource allocation in plant defence. Refined expression analysis using gene-specific primers and real-time PCR for selected transcripts was in agreement with microarray results for most genes tested. This study provides the first large-scale survey of insect-induced defence transcripts in a gymnosperm and provides a platform for functional investigation of plant-insect interactions in spruce. Induction of spruce genes of octadecanoid and ethylene signalling, terpenoid biosynthesis, and phenolic secondary metabolism are discussed in more detail.
Resumo:
This paper presents a case study of a design for a complete microair vehicle thruster. Fixed-pitch small-scale rotors, brushless motors, lithium-polymer cells, and embedded control are combined to produce a mechanically simple, high-performance thruster with potentially high reliability. The custom rotor design requires a balance between manufacturing simplicity and rigidity of a blade versus its aerodynamic performance. An iterative steady-state aeroelastic simulator is used for holistic blade design. The aerodynamic load disturbances of the rotor-motor system in normal conditions are experimentally characterized. The motors require fast dynamic response for authoritative vehicle flight control. We detail a dynamic compensator that achieves satisfactory closed-loop response time. The experimental rotor-motor plant displayed satisfactory thrust performance and dynamic response.
Resumo:
With the increase in the level of global warming, renewable energy based distributed generators (DGs) will increasingly play a dominant role in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cells and micro turbines will gain considerable momentum in the near future. A microgrid consists of clusters of load and distributed generators that operate as a single controllable system. The interconnection of the DG to the utility/grid through power electronic converters has raised concern about safe operation and protection of the equipments. Many innovative control techniques have been used for enhancing the stability of microgrid as for proper load sharing. The most common method is the use of droop characteristics for decentralized load sharing. Parallel converters have been controlled to deliver desired real power (and reactive power) to the system. Local signals are used as feedback to control converters, since in a real system, the distance between the converters may make the inter-communication impractical. The real and reactive power sharing can be achieved by controlling two independent quantities, frequency and fundamental voltage magnitude. In this thesis, an angle droop controller is proposed to share power amongst converter interfaced DGs in a microgrid. As the angle of the output voltage can be changed instantaneously in a voltage source converter (VSC), controlling the angle to control the real power is always beneficial for quick attainment of steady state. Thus in converter based DGs, load sharing can be performed by drooping the converter output voltage magnitude and its angle instead of frequency. The angle control results in much lesser frequency variation compared to that with frequency droop. An enhanced frequency droop controller is proposed for better dynamic response and smooth transition between grid connected and islanded modes of operation. A modular controller structure with modified control loop is proposed for better load sharing between the parallel connected converters in a distributed generation system. Moreover, a method for smooth transition between grid connected and islanded modes is proposed. Power quality enhanced operation of a microgrid in presence of unbalanced and non-linear loads is also addressed in which the DGs act as compensators. The compensator can perform load balancing, harmonic compensation and reactive power control while supplying real power to the grid A frequency and voltage isolation technique between microgrid and utility is proposed by using a back-to-back converter. As utility and microgrid are totally isolated, the voltage or frequency fluctuations in the utility side do not affect the microgrid loads and vice versa. Another advantage of this scheme is that a bidirectional regulated power flow can be achieved by the back-to-back converter structure. For accurate load sharing, the droop gains have to be high, which has the potential of making the system unstable. Therefore the choice of droop gains is often a tradeoff between power sharing and stability. To improve this situation, a supplementary droop controller is proposed. A small signal model of the system is developed, based on which the parameters of the supplementary controller are designed. Two methods are proposed for load sharing in an autonomous microgrid in rural network with high R/X ratio lines. The first method proposes power sharing without any communication between the DGs. The feedback quantities and the gain matrixes are transformed with a transformation matrix based on the line R/X ratio. The second method involves minimal communication among the DGs. The converter output voltage angle reference is modified based on the active and reactive power flow in the line connected at point of common coupling (PCC). It is shown that a more economical and proper power sharing solution is possible with the web based communication of the power flow quantities. All the proposed methods are verified through PSCAD simulations. The converters are modeled with IGBT switches and anti parallel diodes with associated snubber circuits. All the rotating machines are modeled in detail including their dynamics.
Resumo:
Purpose – The paper aims to explore the key competitiveness indicators (KCIs) that provide the guidelines for helping new real estate developers (REDs) achieve competitiveness during their inception stage in which the organisations start their business. Design/methodology/approach – The research was conducted using a combination of various methods. A literature review was undertaken to provide a proper theoretical understanding of organisational competitiveness within RED's activities and developed a framework of competitiveness indicators (CIs) for REDs. The Delphi forecasting method is employed to investigate a group of 20 experts' perception on the relative importance between CIs. Findings – The results show that the KCIs of new REDs are capital operation capability, entrepreneurship, land reserve capability, high sales revenue from the first real estate development project, and innovation capability. Originality/value – The five KCIs of new REDs are new. In practical terms, the examination of these KCIs would help the business managers of new REDs to effectively plan their business by focusing their efforts on these key indicators. The KCIs can also help REDs provide theoretical constructs of the knowledge base on organisational competitiveness from a dynamic perspective, and assist in providing valuable experiences and in formulating feasible strategies for survival and growth.
Resumo:
We propose a digital rights management approach for sharing electronic health records in a health research facility and argue advantages of the approach. We also give an outline of the system under development and our implementation of the security features and discuss challenges that we faced and future directions.
Resumo:
Dwell times at stations and inter-station run times are the two major operational parameters to maintain train schedule in railway service. Current practices on dwell-time and run-time control are that they are only optimal with respect to certain nominal traffic conditions, but not necessarily the current service demand. The advantages of dwell-time and run-time control on trains are therefore not fully considered. The application of a dynamic programming approach, with the aid of an event-based model, to devise an optimal set of dwell times and run times for trains under given operational constraints over a regional level is presented. Since train operation is interactive and of multi-attributes, dwell-time and run-time coordination among trains is a multi-dimensional problem. The computational demand on devising trains' instructions, a prime concern in real-time applications, is excessively high. To properly reduce the computational demand in the provision of appropriate dwell times and run times for trains, a DC railway line is divided into a number of regions and each region is controlled by a dwell- time and run-time controller. The performance and feasibility of the controller in formulating the dwell-time and run-time solutions for real-time applications are demonstrated through simulations.
Resumo:
This paper reviews the main studies on transit users’ route choice in thecontext of transit assignment. The studies are categorized into three groups: static transit assignment, within-day dynamic transit assignment, and emerging approaches. The motivations and behavioural assumptions of these approaches are re-examined. The first group includes shortest-path heuristics in all-or-nothing assignment, random utility maximization route-choice models in stochastic assignment, and user equilibrium based assignment. The second group covers within-day dynamics in transit users’ route choice, transit network formulations, and dynamic transit assignment. The third group introduces the emerging studies on behavioural complexities, day-to-day dynamics, and real-time dynamics in transit users’ route choice. Future research directions are also discussed.
Resumo:
Conflict occurs when two or more trains approach the same junction within a specified time. Such conflicts result in delays. Current practices to assign the right of way at junctions achieve orderly and safe passage of the trains, but do not attempt to reduce the delays. A traffic controller developed in the paper assigns right of way to impose minimum total weighted delay on the trains. The traffic flow model and the optimisation technique used in this controller are described. Simulation studies of the performance of the controller are given.